On the divisibility of powers of integers

by Jörg W. Müller

Bureau International des Poids et Mesures, F-92312 Sèvres Cedex

Abstract

We examine the residues obtained when powers of integers are divided by the square of the exponent. For a given value n of the exponent, the residues exhibit a striking pattern which is discussed for $\mathrm{n} \leq 16$.

1. Introduction

The surprising observation that the fourth power of any integer N is either an exact multiple of 16 or exceeds such a value by one unit, i.e. that (for $k=0,1,2, \ldots$)

$$
\mathrm{N}^{4}=16 \cdot \mathrm{k}+0 \text { or } 1
$$

naturally leads to the question of whether there exist similar simple relationships for powers in general.

Problems of divisibility are a basic topic in number theory and they have produced a rich literature. It may nevertheless happen that some of the relationships concerning residue classes of powers of natural numbers considered in what follows are new.

Let us have a look at the residues ($\bmod \mathrm{n}^{2}$) of expressions of the type N^{n}, where both N and n are natural numbers. To illustrate our approach, we first consider the two special cases where the exponents are $n=2$ and $n=3$, before discussing the problem in general.

2. Two special cases

For the case $\underline{n}=2$ we choose for N the decomposition

$$
\mathrm{N}=2 \mathrm{k}+\mathrm{r}
$$

where $\mathbf{r}=0$ or 1 .

Since

$$
\mathrm{N}^{2}=4 \mathrm{k}^{2}+4 \mathrm{kr}+\mathrm{r}^{2}
$$

we have

$$
\begin{equation*}
N^{2}=r^{2}=0 \text { or } 1(\bmod 4) . \tag{1}
\end{equation*}
$$

It follows from (1) that for any square N^{2} we have the relation

$$
\mathrm{N}^{2}=0 \text { or } 1(\bmod 4) .
$$

In the same way, for $\underline{n=3}$ we write

$$
\mathrm{N}=3 \mathrm{k}+\mathrm{r},
$$

with $\mathrm{r}=0, \pm 1$.
It is then clear that

$$
\mathrm{N}^{3}=(3 \mathrm{k}+\mathrm{r})^{3}=27 \mathrm{k}^{3}+27 \mathrm{k}^{2} \mathrm{r}+9 \mathrm{k} \mathrm{r}^{2}+\mathrm{r}^{3},
$$

thus

$$
\begin{equation*}
\mathrm{N}^{3}=\mathrm{r}^{3}=0,1 \text { or }-1(\bmod 9) . \tag{2}
\end{equation*}
$$

Negative residuals are used for convenience and, in particular, to avoid large numbers. Thus

$$
\mathrm{N}=-\alpha(\bmod \mathrm{m})
$$

is always equivalent to

$$
N=m-\alpha(\bmod m) .
$$

3. The general case

For the general case, it may be useful to discuss separately the cases of an even or odd power n.
a) For n odd, say $n=2 s+1$, with $s=0,1, \ldots$, we write the integers N in the form

$$
\mathrm{N}=\mathrm{nk}+\mathrm{r},
$$

with $r=0, \pm 1, \pm 2, \ldots, \pm s$.
Then

$$
\begin{aligned}
\mathrm{N}^{\mathrm{n}} & =(\mathrm{nk}+\mathrm{r})^{\mathrm{n}} \\
& =(\mathrm{nk})^{\mathrm{n}}+\mathrm{n}(\mathrm{nk})^{\mathrm{n}-1} \mathrm{r}+\ldots+\mathrm{n}(\mathrm{nk})^{1} \mathrm{r}^{\mathrm{n}-1}+\mathrm{r}^{\mathrm{n}} .
\end{aligned}
$$

By taking this modulo n^{2} we find

$$
\begin{align*}
\mathrm{N}^{\mathrm{n}}= & 0+\mathrm{r}^{\mathrm{n}}\left(\bmod \mathrm{n}^{2}\right) \\
= & \left(0, \pm 1, \pm 2^{\mathrm{n}}, \ldots, \pm \mathrm{s}^{\mathrm{n}}\right)\left(\bmod \mathrm{n}^{2}\right) . \tag{3}
\end{align*}
$$

The possible residues resulting from (3) are listed in Table 1.

Table 1 - The residues occurring in (3), for n odd.

b) For \underline{n} even, say $n=2 s$, the integers N are again written as

$$
N=n k+r
$$

with $r=0, \pm 1, \pm 2, \ldots, \pm(s-1),+s$.
This yields for the power n as before

$$
N^{n}=(n k+r)^{n}=(n k)^{n}+\ldots+r^{n}
$$

thus modulo n^{2} becomes

$$
\begin{align*}
N^{n}= & r^{n}\left(\bmod n^{2}\right) \\
& =\left(0,1,2^{n}, \ldots, s^{n}\right)\left(\bmod n^{2}\right) \tag{4}
\end{align*}
$$

For even powers n we are led to the residues given in Table 2.
. Table 2 - The residues occurringin (4), for n even.

n	r^{n}							$\mathrm{R}=\mathrm{r}^{\mathrm{n}}\left(\bmod \mathrm{n}^{2}\right)$				
2	0 ,	1						0 ,	1			
4	0 ,	1 ,	$2^{\text {n }}$					0 ,	1			
6	0 ,	1 ,	$2^{\text {n }}$	3^{n}				0 ,	1,	-8,	9	
8	0 ,	1 ,	$2^{\text {n }}$	$3^{\text {n }}$	4^{n}			0 ,	1,	33		
10	0 ,	1 ,	$2^{\text {n }}$	$3^{\text {n }}$	4^{n},	$5^{\text {n }}$		0 ,	1,	25,	± 24,	49
12	0 ,	1 ,	$2^{\text {n }}$	$3^{\text {n }}$	$4^{\text {n }}$,	5^{n}	$6^{\text {n }}$	0 ,	1,	-63,	64	

From the above it follows that, for n even or n odd, we have the general relation

$$
\begin{equation*}
N^{n}=R\left(\bmod n^{2}\right), \tag{5}
\end{equation*}
$$

with the values of R given (for $\mathrm{n} \leq 12$) in Tables 1 and 2 .

4. Some complements

For a more detailed insight, the residues R do not only have to be known globally for a given exponent n, as presented in Tables 1 and 2, but their association with the specific values of N must also be given. Since the residues R have a particular structure with period n, it is sufficient to list them for the n possible values of $m=N(\bmod n)$. This has been done in Table 3 (for $\mathrm{n} \leq 16$).

Table 3 - List of the residues $R=R(n, m)$ for the powers N^{n}, with $N=m(\bmod n)$.
Values not listed for m are zero.

	$\mathrm{m}=1$	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$\mathrm{n}=2$	1														
3	1	-1													
4	1	0	1												
5	1	7	-7	-1											
6	1	-8	9	-8	1										
7	1	-19	-18	18	19	-1									
8	1	0	33	0	33	0	1								
9	1	26	0	28	-28	0	-26	-1							
10	1	24	49	-24	25	-24	49	24	1						
11	1	-9	3	-40	27	-27	40	-3	9	-1					
12	1	64	-63	64	1	0	1	64	-63	64	1				
13	1.	80	-23	-22	70	-19	-49	$=-70$	22	23	-80	-1			
14	1	-80	-19	-68	-31	-48	49	-48	-31	-68	-19	-80	1		
15	1	-82	-18	-26	-100	-99	-107	107	99	100	26	18	82	-1	
16	1	0	65	0	-63	0	129	0	129	0	-63	0	65	0	1

A closer look at this tabulation reveals some interesting symmetries. Thus, it is readily seen that

$$
\begin{array}{ll}
R(n, m)=R(n, n-m), & \text { for } n \text { even, and } \\
R(n, m)=-R(n, n-m), & \text { for } n \text { odd, } \tag{6}
\end{array}
$$

with $\mathrm{m} \leq \mathrm{n} / 2$.

Exact divisibility ($R=0$) occurs only for exponents n which are of the form

$$
\begin{equation*}
\mathrm{n}=\mathrm{ch}^{2} \tag{7}
\end{equation*}
$$

where $\mathrm{c} \geq 1$ and $\mathrm{h} \geq 2$.
Then $R\left(n, m_{0}\right)=0$ if m_{0} is a multiple of $c h$ (below n).
This may be illustrated by the following examples:

$$
\begin{array}{ll}
\text { If } n=8=1 \cdot 2^{3}, & \text { then } m_{0}=2,2 \cdot 2 \text { or } 3 \cdot 2 ; \\
\text { if } n=9=1 \cdot 3^{2}, & \text { then } m_{0}=3 \text { or } 2 \cdot 3 ; \\
\text { if } n=12=3 \cdot 2^{2}, & \text { then } m_{0}=3 \cdot 2 .
\end{array}
$$

However, many other features of Table 3 remain mysterious, such as the occurrence of the sequences $-8,9,-8$ (for $n=6$), $-24,25,-24$ (for $n=10$) or $64,-63,64$ (for $n=12$).

In addition, many of the equivalences given above can apparently be simplified. Thus, for $n=2,3$ and 4 we have, for example, the relations

$$
\begin{align*}
\mathrm{N}^{2}(\bmod 4) & =\mathrm{N}^{2}(\bmod 2) \\
\mathrm{N}^{3}(\bmod 9) & =\mathrm{N}(\bmod 2), \tag{8}\\
\mathrm{N}^{4}(\bmod 3) & =\mathrm{N}(\bmod 3), \\
& =\mathrm{N}^{4}(\bmod 4)
\end{align*}=\mathrm{N}(\bmod 2), .
$$

if we agree systematically to use negative residues when $r>n / 2$.
The general rules applicable to decompositions similar to (8), however, are not known to the author.
(July 1995)

