On the divisibility of powers of integers

by Jörg W. Müller

Bureau International des Poids et Mesures, F-92312 Sèvres Cedex

Abstract

We examine the residues obtained when powers of integers are divided by the square of the exponent. For a given value n of the exponent, the residues exhibit a striking pattern which is discussed for $n \leq 16$.

1. Introduction

The surprising observation that the fourth power of any integer N is either an exact multiple of 16 or exceeds such a value by one unit, i.e. that (for k = 0, 1, 2, ...)

$$N^4 = 16 \cdot k + 0 \text{ or } 1$$
,

naturally leads to the question of whether there exist similar simple relationships for powers in general.

Problems of divisibility are a basic topic in number theory and they have produced a rich literature. It may nevertheless happen that some of the relationships concerning residue classes of powers of natural numbers considered in what follows are new.

Let us have a look at the residues (mod n^2) of expressions of the type N^n , where both N and n are natural numbers. To illustrate our approach, we first consider the two special cases where the exponents are n = 2 and n = 3, before discussing the problem in general.

2. Two special cases

For the case n = 2 we choose for N the decomposition

$$N = 2k + r$$

where r = 0 or 1.

Since

$$N^2 = 4k^2 + 4k r + r^2.$$

we have

$$N^2 = r^2 = 0 \text{ or } 1 \pmod{4}$$
 (1)

It follows from (1) that for any square N^2 we have the relation

 $N^2 = 0 \text{ or } 1 \pmod{4}$.

In the same way, for n = 3 we write

N = 3k + r,

with $r = 0, \pm 1$.

It is then clear that

$$N^{3} = (3k + r)^{3} = 27 k^{3} + 27 k^{2} r + 9 k r^{2} + r^{3},$$

thus

$$N^3 = r^3 = 0, 1 \text{ or } -1 \pmod{9}$$
. (2)

Negative residuals are used for convenience and, in particular, to avoid large numbers. Thus

$$N = -\alpha \pmod{m}$$

ĩ

is always equivalent to

 $N = m - \alpha \pmod{m}.$

3. The general case

For the general case, it may be useful to discuss separately the cases of an even or odd power n.

a) For <u>n odd</u>, say n = 2s + 1, with s = 0, 1, ..., we write the integers N in the form

$$\mathbf{N} = \mathbf{n}\mathbf{k} + \mathbf{r} \,.$$

with $r = 0, \pm 1, \pm 2, ..., \pm s$.

•

Then

$$N^{n} = (nk + r)^{n}$$

= (nk)ⁿ + n (nk)ⁿ⁻¹ r + ... + n (nk)¹ rⁿ⁻¹ + rⁿ.

By taking this modulo n^2 we find

$$N^{n} = 0 + r^{n} \pmod{n^{2}}$$

= (0, ±1, ±2ⁿ, ..., ±sⁿ) (mod n²).

(3)

1

The possible residues resulting from (3) are listed in Table 1.

Table 1 - The residues occurring in (3), for n odd.

n	r ⁿ		1	R =	r ⁿ (m	od n ²)			
1	0		1	0	-				
3	0,	±1		0,	±1				
5	0,	± 1 , $\pm 2^n$	Ì	0,	±1,	±7			
7	0,	± 1 , $\pm 2^n$, $\pm 3^n$	ļ	0,	±1,	± 18,	± 19		
9	0,	± 1 , $\pm 2^{n}$, $\pm 3^{n}$, $\pm 4^{n}$	I	0,	±1,	±26,	±28		
11	0,	± 1 , $\pm 2^{n}$, $\pm 3^{n}$, $\pm 4^{n}$, $\pm 5^{n}$	I	0,	±1,	±3,	±9,	±27,	±40

b) For <u>n even</u>, say n = 2s, the integers N are again written as

$$N = nk + r,$$

with
$$r = 0, \pm 1, \pm 2, ..., \pm (s-1), +s$$
.

This yields for the power n as before

$$N^{n} = (nk + r)^{n} = (nk)^{n} + ... + r^{n}$$
,

thus modulo n^2 becomes

$$N^{n} = r^{n} \pmod{n^{2}}$$

= (0, 1, 2ⁿ, ..., sⁿ) (mod n²). (4)

1

For even powers n we are led to the residues given in Table 2.

Table 2 - The residues occurring in (4), for n even.

n	r ⁿ								R =	= r ⁿ ((mod r	າ ²)	
2	0,	1						1	0,	1			
4	0,	1,	2^{n}					Ì	0,	1			
6	0,	1,	2 ⁿ ,	3 ⁿ					0,	1,	-8,	9	
8	0,	1,	2 ⁿ ,	3 ⁿ ,	4^n			1	0,	1,	33		
10	0,	1,	2 ⁿ ,	3 ⁿ ,	4 ⁿ ,	5 ⁿ		1	0,	1,	25,	±24,	49
12	0,	1,	2 ⁿ ,	3 ⁿ ,	4 ⁿ ,	5 ⁿ ,	6 ⁿ		0,	1,	-63,	64	

From the above it follows that, for n even or n odd, we have the general relation

$$N^{n} = R \pmod{n^{2}},$$
(5)

with the values of R given (for $n \le 12$) in Tables 1 and 2.

4. Some complements

For a more detailed insight, the residues R do not only have to be known globally for a given exponent n, as presented in Tables 1 and 2, but their association with the specific values of N must also be given. Since the residues R have a particular structure with period n, it is sufficient to list them for the n possible values of $m = N \pmod{n}$. This has been done in Table 3 (for $n \le 16$).

Table 3 - List of the residues R = R(n,m) for the powers N^n , with $N = m \pmod{n}$. Values not listed for m are zero.

	m=1	l 2	3	4	5	6	7	8	9	10	11	12	13	14	15
n=2	1	,													
3	1	-1													
4	1	0	1											1	
5	1	7	-7	-1											
6	1	-8	9	-8	1						4 - P				
7	1	-19	-18	18	19	-1									
8	1	0	33	0	33	0	1								
9	1	26	0	28	-28	0	-26	-1							
10	1	24	49	-24	25	-24	49	24	1						
11	1	-9	3	-40	27	-27	40	-3	9	-1					
12	1	64	-63	64	1	0	1	64	-63	64	1				
13	1.	80	-23	-22	70	-19	-19*	r ~ <u>-</u> 70	22	23	-80	-1			
14	1	-80	-19	-68	-31	-48	49	-48	-31	-68	-19	-80	1		
15	1	-82	-18	-26	-100	-99	-107	107	99	100	26	18	82	-1	
16	1	0	65	0	-63	0	129	0	129	0	-63	0	65	0	1

A closer look at this tabulation reveals some interesting symmetries. Thus, it is readily seen that

$$R(n,m) = R(n,n-m)$$
, for n even, and
 $R(n,m) = - R(n,n-m)$, for n odd,
(6)

with $m \leq n/2$.

Exact divisibility (R = 0) occurs only for exponents n which are of the form

$$n = c h^2$$
,

where $c \ge 1$ and $h \ge 2$.

Then $R(n,m_0) = 0$ if m_0 is a multiple of c h (below n).

This may be illustrated by the following examples:

If	$n = 8 = 1 \cdot 2^3$,	then	$m_0 = 2, 2 \cdot 2 \text{ or } 3 \cdot 2;$
if	$n = 9 = 1 \cdot 3^2$,	then	$m_0^{} = 3 \text{ or } 2 \cdot 3;$
if	$n = 12 = 3 \cdot 2^2$,	then	$m_0 = 3 \cdot 2$.

However, many other features of Table 3 remain mysterious, such as the occurrence of the sequences -8, 9, -8 (for n = 6), -24, 25, -24 (for n = 10) or 64, -63, 64 (for n = 12).

In addition, many of the equivalences given above can apparently be simplified. Thus, for n = 2, 3 and 4 we have, for example, the relations

$$N^{2} \pmod{4} = N^{2} \pmod{2} = N \pmod{2},$$

$$N^{3} \pmod{9} = N^{3} \pmod{3} = N \pmod{3},$$

$$N^{4} \pmod{16} = N^{4} \pmod{4} = N \pmod{2},$$
(8)

if we agree systematically to use negative residues when r > n/2.

The general rules applicable to decompositions similar to (8), however, are not known to the author.

(July 1995)

(7)