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Abstract 

Since factorials often give rise to simpler mathematical expressions than 
powers of the same order, we study the behaviour of sums of factorials. 
They can indeed be expressed in a remarkably compact form. A comparison 
with Bernoulli sums leads to two relations, one of them implying a surprising 
link between Bernoulli numbers and sums over Stirling numbers of the first 
kind. 

1. Introduction 

As is well known, sums of the form 

n 

rSn == ! 
j=l 

.r 
J , for r = 1, 2, ... , (1) 

lead to the expression first found by J. Bernoulli, in which the Bernoulli numbers made 
their appearance [1]. Equation (1) will be called a Bernoulli sum in what follows. 
However, factorials often lead to less complicated formulae than powers; for a striking 
example, one may compare ordinary with factorial moments for some discrete 
statistical distributions. We therefore wonder if sums of the form 

n 

~Sn) == ! (j) , 
j=r r 

where (j)r:=j(j-l) (j-2) ... (j-r+l) is aso-catlea"falling'factorial" [2], would lead to 
similar, and possibly simpler, expressions than for (l). The notation used in (2) for 
factorial sums is practical, but requires special attention. 

2. A direct way of summing 

In this first approach, we make use of a formula which allows us to express (2) by a 
single falling factorial. A formula suitable for this purpose has been found [3] and is 
written in the form 

n 
! m (m+ 1) ... (m+k) 

m=l 

n (n+ 1) ... (n+k+ 1) 
k+2 

(2) 

(3) 
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Putting m+k = j we find 

k+n 
! j 0-1) ... O-k) = 

(n+k-l) k+2 

j=k+l k+2 

or, with k+l = rand k+n = N, 

N (N+l) 
~ a) = r+l 
"'" r r+l j=r 

Hence, the factorial sum (2) can be written in the simple form 

_ (n+l)r+l 
<rSJ - r+l . 

This result can be linked to the Bernoulli sum (1). 

Since, according to [2], for r = 1, 2, ... , 

r 
l = ! S(r,k) G)k' 

k=l 
where S(r,k) is a Stirling number of the second kind, we also have 

r r (n+l)k 1 
rSn = ! S(r,k) (kSJ = ! S(r,k) k+l + 

k=l k=l 

This is apparently a novel and, it seems, conveniently compact formula for evaluating 
a Bernoulli sum of type (1). For illustration, we take the example t 

4 (8) 1 6 1 
4S7 = ! S(4,k) k+kil = 2" (8)2 + i (8)3 + 4 (8)4 + 5 (8)5 = 4676, 

k=l 

which is in agreement with a direct evaluation based on (1). 

3. An alternative method 

(4) 

(5) 

(6) 

(7) 

We begin with a relation which allows us to transform the factorial G)r in (2) into a sum 
of powers, namely [2] 

r 
G) = ! s(r,k)l, 

r k=l 

where s(r,k) is a Stirling number of the first kind. We note that (6) and (8) form a 
symmetriC pair of relations. 

In addition, we make use of the known explicit expression for a Bernoulli sum (1), 
which can be written, in the form of increasing powers of n, as 

r+l . 
rSn = ! raj If . 

j=l 

The coefficients raj of lowest order are assembled in Table 1. 

(8) 

(9) 
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Table 1. Coefficients rCXj appearing in (9) for the Bernoulli sums rSn' 

rCXl r cx2 rcx3 rcx4 rcx5 rcx6 rcx7 rcx8 rCXg 

r=1 1/2 1/2 

2 1/6 1/2 1/3 

3 0 1/4 1/2 1/4 

4 -1/30 0 1/3 1/2 1/5 

5 0 -1/12 0 5/12 1/2 1/6 

6 1/42 0 -1/6 0 1/2 1/2 1/7 

7 0 1/12 0 -7/24 0 7/12 1/2 1/8 

8 -1/30 0 2/9 0 -7/15 0 2/3 1/2 1/9 

This gives 

- for r = 2 

CD2 
. + .2 - J J , 

thus 
n 

CD =-!j+!l ~Sn) = .! 
J=l 2 j j 

= - (~ n + ~ n2) + ! n + ! n2 + ! n3 
6 2 3 

1 n + ! n3 - "3 3 ' 

- for r = 3 

CD = 2j 3 .2 + .3 
3 - J J , 

- for r = 4 

etc. 
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By assembling the numerical results thus obtained in the form of the expansion 

r+l . 
(Sn) = 2 r~' J . 
r j=l J 

(10) 

we find for the coefficients r~' the values given in Table 2. 
J 

Table 2. The coefficients r~j appearing in 10, for 1 :::s; r :::s; 8. 

r~l r~2 r~a r~4 r~5 r~6 r~7 r~S r~9 

r = 1 1/2 1/2 

2 -1/3 0 1/3 

3 1/2 -1/4 -1/2 1/4 

4 -6/5 1 1 -1 1/5 

5 4 -13/3 -5/2 25/6 -3/2 1/6 

6 -120/7 22 7 -20 10 -2 1/7 

7 90 -261/2 -35/2 889/8 -70 77/4 -5/2 1/8 

8 -560 892 -64/9 -707 4809/9 -182 98/3 -3 1/9 

By putting (r+l) r~j = rYj-l ' we arrive at new coefficients which are all integers. With 
them, the factorial sum (2) now takes the form 

n n r j 
~SJ = .2 (j)r = r+ 1 .2 r Yj IT , (11) 

J=l J=o 

with the coefficients y. listed in Table 3. 
r J 

Table 3. The coefficients y. appearing in (11), for 1 :::s; r :::s; 8. 
r J 

. rYO rYl rY2 " rYa ., '! t.;y4 " rY5 rY6 rY7 rYS 

r=1 1 1 

2 -1 0 1 

3 2 -1 -2 1 

4 -6 5 5 -5 1 

5 24 -26 -15 25 -9 1 

6 -120 154 49 -140 70 -14 1 

7 720 -1 044 -140 889 -560 154 -20 1 

8 -5040 8028 -64 -6363 4809 -1638 294 -27 1 
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At first sight, the coefficients y. show hardly any regularity (except for the limiting 
r J 

values rYO and rY). However, one can find that 

r 
! rY. = 0, for r ~ 2, 
j=o J 

r . 
! (-li rY. = 0, for r ~ 1 . 
j=o J 

In addition, a closer inspection reveals a surprisingly simple rule, namely that all the 
coefficients follow the general relation 

rY. = s(r,j+ 1) + s(r,j), 
J 

where s(r,k) are again Stirling numbers of the first kind, for which we put, as usual, 
s(r,j) = 0 for j > r or j :::;; O. 

As a simple check of (11) and (13) we consider the case r = 1, where 

n 1 
! CD = ~ ! [s(1,j) + s(1,j+ 1)] J 
j=1 1 j=O 

= ~ [(0 + 1) nO + (1 + 0) n1 ] 

n 
= n (1 + n) = ! j , 

'2 j=1 

as expected. 

4. Relation with the Bernoulli sums 

By means of (6), the Bernoulli sum (1) can also be written as 

which, taking advantage of the decorrtPositipIl:,giyen in, (11), becomes 
• t 

r 1 k ·+1 
rSn = ! S(r,k) k+l .! kY· If , 

k=1 J=O J 

with 1 :::;; j+ 1 :::;; r+ 1 . 

Using the known expression (13) for kYj we find 

S = f S(r,k) f [s(k,j+l) + s(k,j)] J+l . 
r n k=1 k+ 1 j=O 

(13) 

(14) 
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It is convenient for later use to introduce the shorthand notation 

r 
S = ~ A nr+1-f 
rn '" f ' f=O 

with f = r-j . (15) 

The powers of n are within the limits 1 and r+ 1, as they should be for a Bernoulli sum, 
and the coefficient of n:i+1 = nr+1-f has the general form (t = r-k) 

f S(r,r-t) 
Af =! r+l-t [s(r-t,r+l-t) + s(r-t,r-t)] . 

t=O 

Let us look at the coefficients Af for some low values of f. The simplest case is f = 0, 
which corresponds to the power nr+l, according to (15). One finds, since j = r, 

S~~ 1 Ao = r+r [s(r, r+l) + s(r,r)] = r+l' 

since S(r,r) = s(r,r) = 1 and s(r,r+ 1) = O. 

Similarly, we have for f = 1 

S~~ S~~n 
Al = r+r [s(r,r) + s(r,r-l)] + r [s(r-l,r) + s(r-l,r-l)] . 

By means of the relations given in (A7) we can write 

The results for 1',.0 and Al agree with what we expect on the basis of the Bernoulli 
development (compare the coefficients in Table 1). 

(16) 

There are several equivalent ways to write the general expression for a Bernoulli sum. 
A convenient one (see (23) in [4]) is to put, using decreasing powers of n, 

r 
rSn = ! C nr+1-f , (17) 

f=O f 

with Co = 1 
Cl = 1 .' "1t ...... , ' ;11 (18) r+l ' 2" 

and Cf = t (ll) Bf , for f ~ 2, (19) 

where Bf are the so-called Bernoulli numbers, with B2 = 1/6, B4 = -1/30, B6 = 1/42, .... 

A comparison with (15) leads to the identity 

(20) 
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Since the Bernoulli numbers Bf vanish for f ~ 3 and odd, we have also the relation 

Af = 0, for f = 3, 5, 7, .... (21) 

No simple and general way to verify (20) or (21) is known. However, by showing 
explicitly their correctness for some low values of f, our belief in their general validity 
will be strengthened. 

In the case of f = 2 we have, according to (16), 

S(r,r) 
A2 = r+l [s(r,r-l) + s(r,r-2)] 

+ S(r,t1) [s(r-l,r-l) + s(r-l,r-2)] 

+ S(~_;-2) [s(r-2,r-l) + s(r-2,r-2)] . 

Making use of the results in (A7) for the Stirling numbers, we obtain 

After some lengthy rearrangements this can be reduced to A2 = r/12. This is in 
agreement with (20). 

For the case f = 3 we expect from (21) that Aa = O. A direct evaluation according to 
(16) gives f 

S(r,r) 
Aa = r+l [s(r,r-2) + s(r,r-3)] 

S(r,r-l) 
+ r [s(r-l,r-2) + s(r-l,r-3)] 

S(r,r-2) 
+ r-l [s(r-2,r-2) + s(r-2,r-3)] 

S(r,r-3) 
+ r-2 [s(r-3,r-2) + s(r-3,r-3)] . 

By means of the relations given in the Appendix we can also write 

Aa ~ rll [3(£)+2(S)-15([i)-20('5F6(£)] 

+ ( 2) } [ - ( r:i ) + 3 ( ri ) + 2 (ri ) ] 
+ r~ 1 [3 (£) + (S)] [1 -( ri) ] 
+ r~2 [ 15 ([i) + 10 (!) + (£)] 1 . 
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After some elementary but lengthy algebra, A3 can be shown to vanish, as expected. 

Similar, although even more strenuous efforts are required to verify that A4 = - (~)/120, 
again in agreement with (20). 

Thus, although formula (16) for Af is based on the unproven relation (12), there can be 
no real doubt that both (20) and (21) are valid in general. 

APPENDIX 

Stirling numbers as sums of binomial coefficients 

Since relatively few relations are known which involve Stirling numbers (many of them 
are somewhere in [5], but difficult to find), it is useful to have relations which allow us 
to transform Stirling numbers into a form which lends itself to later algebraic 
manipulation. Otherwise, general reasoning must be stopped and replaced by numerical 
treatment, which is usually more cumbersome and less efficient. 

A possible way to circumvent such a limitation is given by transforming Stirling 
numbers into binomial coefficients, for which more relations are available for 
subsequent handling. 

The relevant relations have been known for long, but they are rarely mentioned in 
modern texts. My main source is a book by Jordan [6], the tabulations of which have 
been extended. The notation follows Riordan [2]. 

a) Stirling numbers of the first kind 

Stirling numbers of the first kind, written as s(n,k), allow the following decomposition 
into binomial coefficients: 

with d = 1, 2, ... , n-l . 

d-l (1) ( n ) 
s(n,n-d) = j!o Jd,j 2d-j , 

-." '1/" ,"', 

The Jordan coefficients l1) are listed in Table AI. d,j 

This tabulation can be continued by applying the recursion formula 

For checking purposes, it may be useful to know that 

(AI) 

(A2) 

(A3) 
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b) Stirling numbers of the second kind 

For Stirling numbers of the second kind, written as S(n,k), we have the analogous 
relation 

d-l 

S(n,n-d) = j!o J~~~ (2S-j), 

with the coefficients J~2J listed in Table A2. 

Here the recurrence is 

while the alternate sum is 
d-l 
! (-I)j J~2~ d! . 

j=O ,J 

Let us end by giving some simple examples which illustrate the use of the tables. 

s(n,n-l) - m), S(n,n-l) = m) , 

s(n,n-2) = 3 (S) + 2 (y) , S(n,n-2) 3(S)+(Y), 

s(n,n-3) = -15 m) -20 (g) - 6 (S) , S(n,n-3) = 15 (R) + 10 (g) + (S) , 

(A4) 

(A5) 

(A6) 

(A7) 

s(n,n-4) = 105 (R) + 210 (9) + 130 (R) + 24 (g), S(n,n-4) = 105 (R) + 105 (9) + 25 (R) + (g). 



Table Al - Jordan coefficients il) dj , for d <; 8. 

j=O 1 2 3 4 5 6 7 

d = 1 -1 

2 3 2 

3 -15 -20 -6 

4 105 210 130 24 

5 -945 -2520 -2380 -924 -120 

6 10395 34650 .~ 44100 26432 7308 720 
I-' 
0 

? 

7 -135 135 -540540 -866250 -705320 -303660 -64224 -5040 

8 2027025 9459450 
~ .... -. 

18288270 18858840 11 098780 3678840 623376 40320 



Table Al - Jordan coefficients l2) dj , for d ~ 8. 

j=O 1 2 3 A 5 6 7 

d = 1 1 

2 3 1 

3 15 10 1 

4 105 105 25 1 

5 945 1260 490 56 1 
I-' 

6 10395 17325 "~ 9450 1918 119 1 I-' 

7 135 135 270270 190575 56980 6825 246 1 
"~ -. 

8 2027025 4729725 4099095 1 636635 302995 22935 501 1 
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