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Abstract 

By looking more closely at the numerical properties of alternate powers of 
integers, an explicit expression for the general formula for their sum can be 
obtained. This has a structure which is strongly reminiscent of the well­
known Bernoulli formula, valid for positive terms, but without being just a 
simple variant of it. In particular, there appears a series of (integer) numbers 
which play a role similar to those of Bernoulli. 

1. Introduction 

Recently, in studying the parity method, we met the problem of determining sums" of 
the form 

r = 1, 2, ... , (1) 

where p is a Poisson probability. Let us concentrate in what follows on the evaluation 
n 

of 

r~ 
n . 

- ! (-lY i . 
j=l 

(2) 

Apart from the alternate sign, this looks li!5e.tlJ.~ old problem of summing over powers 
of natural immbers, for which Jakob Bernoulii has pr()vided his well-known formula [1]. 

One may be tempted to try to rearrange (2) in such a way that his solution can 
somehow be applied, but this idea seems to be rather difficult to use. Instead, we adopt 
a purely empirical approach, hoping that the appearance of some regular pattern will 
guide our further steps. 

2. Some elementary considerations 

Let us first consider the simplest cases with r = 1, 2 and 3, for which some numerical 
results are assembled in Table 1. 
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Table 1. Numerical values for 1 Zn' 2Zn and aZn' for n ~ 10. 

n (_l)n n 
l Zn 

(_l)n n2 
2Zn 

(_1)n na 
aZn 

, 

1 -1 -1 'I -1 -1 -1 -1 

2 2 1 4 3 8 7 

3 -3 -2 -9 -6 -27 -20 

4 4 2 16 10 64 40 

5 -5 -3 -25 -15 -125 -81 

6 6 3 36 21 216 135 

7 -7 -4 -49 -28 -343 -208 

8 8 4 64 36 512 304 

9 -9 -5 -81 -45 -729 -425 

10 10 5 100 55 1000 575 

Thus, for inst~nce, the alternate quadratic sum (for r = 2) becomes 

2Z = [-1 PI - 6 Pa - 15 P5 - 28 P7 - ... ] + [3 P2 + 10 P4 + 21 P6 + 36 Ps + ... ] , (3) 

where we have separated the negative from the positive contributions, which result 
from the odd and the even values of n. This reminds us that the problem has its origin 
in the parity method. 

We rewrite (1) in the form 

00 00 

rZ = ~ rAt P2t-l + .~ rBt P2t . 
t=1 J=1 

Obviously the problem now is the determination of the coefficients 

and.. rBt., ~! 'r~t " ;' i with t = 1, 2, .... , 

Let us proceed empirically. For the case r = 2 we make the ansatz 

2A t = 2J.10 + 2J.11 t + 2J.12 t
2 

, 
and likewise 

From Table 1 it follows that, for t = 1 to 3, 

2Al = 2J.10 + 2J.11 + 2J.12 = -1 

2A2 = 2J.10 + 2 2J.11 + 4 2J.12 = -6 

2Aa = 2J.10 + 3 2J.11 + 9 2J.12 = -15 

(4) 

(5) 
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One can readily find that 2JlO = 0, 2JlI = 1 and 2Jl2 = -2. Hence, the required expression is 

Similarly we find 

The case r = 3 leads, with Table 1, to the relation 

= [-1 PI - 20 Ps - 81 P5 - 208 P7 - ... ] + [7 P2 + 40 P4 + 135 P 6 + 304 P8 + ... ] 

Again we put 

Solving, with t = 1 to 4 and the known values SAt and SBt' we find 

SAt = 3 t 2 
- 4 tS , 

SBt = 3 t 2 + 4 tS . 

By proceeding likewise for r = 4 and r = 5 we arrive at 

4At = -t + 8 tS - 8 t4 , 

4Bt = -t + 8 tS + 8 t4 

and 

5At = -5 t 2 + 20 t4 - 16 t 5 
, ;li 

" "',1' , .... , 

5Bt = -5 t 2 + 20 t4 + 16 t5 . 

It may be useful to assemble the coefficients obtained till now in tabular form, in 
the hope that this will give us some more insight. 

(6 a) 

(6b) 

(7) 

(8) 

(9) 



4 

Table 2. List of the coefficients J.1. and v., for r :S 5. In the case of double signs, 
r J r J 

minus refers to rJ.1r and plus to rVr' 

j=O 1 2 3 4 

r=1 0 + 1 

2 0 1 +2 

3 0 0 3 +4 
4 0 - 1 0 8 +8 

5 0 0 -5 0 20 

3. Preliminary conclusions 

Inspection of Table 2 leads to the following tentative observations: 

a) with reasonable confidence: 

= - v = - 2r-1 . 
r r ' 

b) with some hesitation: 

r 
! rJ.1. = - 1, 

j=l J 

5 

::; 16 

(10) 

(11) 

In addition, Table 2 seems to be arranged in "falling diagonals", some of which have only 
positive or negative signs (if j = 0 is left out), while others are zero. In order to clarify 
these issues, further numerical values are needed. 

"'; IJf,.I' , •• , , 

It is rather 'easy, by continuing with the guessing method described above (followed by 
rigorous checks), to continue to r = 9. With a computer programme, kindly set up by F. 
Lesueur, it has subsequently been possible to verify all these values and extend the 
tabulation to r = 12. The coefficients are listed in Table 3 and they allow us to confirm 
all the observations made above. 



~ 

Table 3. Table of the coefficients rPj , for r ~ 12. 

j = 1 2 3 4 5 6 7 8 9 10 11 12 

r = 1 -1 

2 1 -2 

3 0 3 -4 

4 -1 0 8 -8 

5 0 -5 0 20 -16 

6 3 0 -20 0 48 -32 01 

-.:~ 

7 0 21 0 -70 0 112 -64 

8 -17 0 112 0 -224 0 256 -128 

9 0 -153 o ' - :~ 504 0 -672 0 576 -256 

10 155 0 -1020 0 2016 0 -1920 0 1280 -512 

11 0 1 705 0 -5610 0 7392 0 -5280 0 2816 -1024 

12 -2073 0 13640 0 -26928 0 25344 0 -14080 0 6144 -2048 
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4. Towards a general solution 

Let us look at the values in the various "diagonals". For the diagonal with the values 1, 
3, 8, 20, 48, ... , we readily find the general relation 

2r -3 
rJlr_1 = r , for r 2:: 2 . 

For the diagonal with the values -1, -5, -20, -70, ... , we obtain 

r-4 r! 
rJlr_3 = - 2 er-3) ! 4 !' for r 2:: 4 . 

Likewise, for the other diagonals we have 

Jl - 2r-6 r ! 3 for r 2:: 6, 
r r-5 - (r-5) ! 6 ! ' 

and 

- 2r -8 r ! ( 17) for r 2:: 8, rJlr-7 - (r-7) ! 8! - , 

respectively. These results also hold for the corresponding coefficients rVj . 

(12a) 

(12b) 

(12c) 

(12d) 

Particularly relevant is the observation that all coefficients rJlj (and rV} admit the simple 
recursion formula 

Jl = Jl ( 2r ) for 2:s J' :S r . r j r-l j-l j , f (13) 

From this it follows that the coefficients listed in Table 3 can be reconstructed from a 
few basic elements, namely the numbers in column j = 1. Putting 

(14) 

we can write, by repeated application of (13), 

- for r - j odd: 

(15a) 

- for r - j even: 

rJlj = 0, with r 2:: j-2 . (15b) 

For r = j, the coefficients are 

r1lr = = _ 2r -1 , (16) 

as already suggested in (10). 

These relations reduce our problem to the determination of the "initial" numbers M . 
r 
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5. Evaluation of the numbers Mr 

For the evaluation of Mr we take advantage of the fact that, for t = 1, rA1 = rZ1 = -1, 
hence 

which confirms (11). 
To show how Mr can be determined, let us , as an example, consider the case r = 8. 

With (16) and (17) we find 

s 
- 1 - ! sP. 

j=2 J 

= - 1 - (sP3 + sP5 + sP7 + sps) 

-- 27 1 - - sP3 - sP5 - sP7 . 

Since, with (15), 

sP3 
= 

228 ! 
M6 , 3f61 

sP5 
24 8 ! 
5!4! M4 , 

26 8 ! 
M2 ' sP7 7!2! 

one obtains 

112 Ms = 127 - 3 M6 - 224 M4 - 256 M2 = - 17 . 

In the general case, we thus have (with r even) 

Since 

M = r 
r-1 r-2 ~ r ! 

2 -1-! (_")'(j+1),Mr-;. j=2 r J. . J 

(even) 

r! _ 1 (t)' 
(r-j) ! (j+1)! - j+1 J ' 

we arrive at the general recursion formula 

-1 r-2 ~ (r) 
Mr = 2

r 
- 1 - .! J.+ 1 j Mr_j · 

J=2 
(even) 

This allows us to determine the first numbers Mr. These are given in Table 4. 

(17) 

(18) 
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Table 4. Numerical values of the numbers Mr' for r :s; 20. 

r Mr r Mr 

2 1 12 - 2073 

4 - 1 14 38227 

6 3 16 - 929569 

8 - 17 18 28820619 

10 155 20 - 1 109 652 905 

6. Final results 

Let us return to the alternate sums rZn defined in (2). In order to arrive at a general 
formula, we first note that they can be written more explicitly in the form 

- fdr n odd, putting t = (n+ 1)/2 : 

r . 
= ! rJ.l. r 

j=l ~ 

= I '"2" + ,". t: + ... + ,", t' , 
rJ.l1 t + rJ.ls t + + rJ.lr t r , 

- for n even, putting t = n/2 : 

1 rV2 t2 + rV4 t4 + ... + rVr t r 
, 

1 rVl t + rVS tS + ... + rVr t r , 

if r odd, 

if r even; 

if r odd, 

if r even. 

Since rVj = rJ.l-, for j < rand rVr = -rJ.lr , we do not have to work any longer 
with the coefficients rVj and we can write 

r-l - .,. 
rZn ,= ! O~j rJ.l. t1 .f (~1)n zr"f t r , 

j=l J. 

where the "survival factor" 0rj , defined by 

1 l+j 
0rj = 2" [1 - (-1) ], 

is 1 or O. Note that t == [n; 1 ] , which denotes the largest integer not exceeding n; 1 . 

For r :s; 20, the coefficients rJ.lj can be taken from Table 3. 

Formula (20) is the main result of this study. 

(20) 

(21) 
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7. Examples 

To illustrate this formula, we consider two numerical examples. 

a) For r = 2 and n = 5, i.e. t = 3, we have with (20) 

since 02 1 = 1. , 

b) For r = 5 and n = 8, i.e. t = 4, we have 

4 . B 4 5 
5ZB = I 05j 5J.1· .tl + (-1) 2 4 = 21424, 

j=l J 

since 05 1 = 05 3 = O. , , 

Both results can easily be verified. 

For r beyond 20, the coefficients rJ.1j are not listed in Table 3, but they can be obtained 
by the application of (15), unless r exceeds 20. If this is the case, one first has to 
evaluate Mr by the help of (18), and then go back to (15). This is more cumbersome, but 
powers r beyopd 20 are expected to occur rarely in practice. 

8. Discussion and conclusion 

In view of the similarity of 

with the Bernoullian sum 

n 

rSn == I 
j=l 

.r 
J , 

it will be of interest to compare the respective explicit expressions. 

For (22), as is well known, the result. can be b,rought into the form 
• 1 

s = _1_ nr+l + 1 nr + f .1 ( ·:1 ) s. nr+1-j , 
r n r+ 1 2 j=2 J '- J J 

(even) 

where J == 2[r/2] and Bj are the so-called Bernoulli numbers, with B2 = 116, 
B4 = -1130, B6 = 1142, etc. 

(2) 

(22) 

(23) 

A comparison of (23) with our general formula (20) for alternate sums reveals both a 
number of interesting similarities and some differences. While in (23) the result is 
expressed in powers of n, i.e. the last term of the original sum, the alternate sum (20) 
uses powers of t = [(n+ 1)/2], which is either n/2 or (n+ 1)/2, depending on whether n is 
even or odd. The summation over j in both cases concerns only every second value. 
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In (20) this is so because of the "survival factor" or· , in (23) since Bj = 0 for all odd j 
values exceeding 2. It is most interesting that the famous Bernoulli numbers B. may 
have found a counterpart in the new numbers M .. In contrast to B., they are iJtegers, 
but they also alternate in sign and vanish for oda values j ~ 3. H~wever, no numerical 
relation between the two series has been found so far. 

A critical reader may rightly object to this report that most of its basic relations are 
guessed rather than proven. This is true, but in defense I might say that the same 
actually holds for Bernoulli's treatment. Yet, the weight of the numerical evidence is 
strong enough (in both cases), that there can be no real doubt as to the correctness of 
the results. Nevertheless, it is obviously to be hoped that mathematicians will soon 
transform our loose framework into a solid construction by providing it both with a 
safer foundation and rigorous connections. 

This report is dedicated to Madame Mireille Boutillon (BIPM) for her cutting, but always 
pertinent, criticism of my occasional excursions in mathematical territory, a field in 
which she is much more at home than I am. Her remarks go to the core and never 
concern italics or similar futilities. By protecting me, during more than a quarter of a 
century, against many ridiculous slips, she has rendered me an invaluable service. 
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