1

Comparison of air kerma and exposure standards of ARL and BIPM

for X rays (100 to 250 kV) and 60 Co gamma radiation

by A.-M. Perroche* Bureau International des Poids et Mesures, F-92312 Sèvres Cedex

and N.J. Hargrave Australian Radiation Laboratory, Yallambie, Victoria 3085

Abstract

The comparison performed between the air kerma and exposure standards of the Australian Radiation Laboratory and the Bureau International des Poids et Mesures for medium-energy X rays and 60 Co gamma radiation is reported. For X rays, the results show a discrepancy of 0.4 %, whereas for 60 Co gamma radiation there is no significant difference.

1. Introduction

An indirect comparison between the air kerma and exposure standards of the Australian Radiation Laboratory (ARL), Yallambie, Australia, and of the Bureau International des Poids et Mesures (BIPM) has been performed in the medium-energy X rays and in the 60 Co gamma radiation. The comparison took place at the BIPM in April 1988. For the X rays the ARL standard is a free-air chamber; for 60 Co ARL has constructed a graphite cavity chamber similar to that of the BIPM standard.

2. Conditions of measurement

For the comparison two transfer cavity chambers (thimble type and graphite wall) belonging to the ARL and manufactured by Nuclear Enterprises Ltd. (serial numbers NE 2561-070 and NE 2561-194) were used.

w/ 40

The results are given in terms of the ratio R of the calibration factors determined at ARL and at BIPM.

^{*} From the Service Central de Protection contre les Rayonnements Ionisants, F-78110 Le Vésinet.

The calibration factors ${\rm N}_{\rm X}$ and ${\rm N}_{\rm K}$ are defined by the relations

$$N_X = X/I$$
 and
 $N_K = K/I$,

where X and K are the exposure rate and the air-kerma rate measured with the standard of each laboratory and I is the ionization current measured with an ARL transfer chamber.

The ionization current I is given for the reference conditions 293.15 K (20 °C) and P $_{\rm O}$ = 101 325 Pa

$$I = I_{exp} \frac{T}{293.15} \frac{P_o}{P}$$

where \mathbf{I}_{exp} is the ionization current measured at temperature T and pressure P.

The collecting voltage applied to the transfer chamber is -200 V. I is corrected neither for humidity nor for ion recombination.

During the calibration the position of the transfer chamber was such that the number inscribed on its stem was pointed towards the radiation source. At the BIPM the chamber was irradiated for half an hour before commencing the measurements. The relative humidity was (55 ± 3) % and the air temperature (20.5 ± 0.5) °C. At the ARL the chamber was similarly positioned and pre-irradiated. The room temperature ((20.0 ± 0.5) °C) was constant to 0.1 °C during any set of measurements. The relative humidity was (49 ± 6) % and the results were assumed to apply at 50 %.

In addition, measurements of the ionization current have been performed with the two chambers, using a 90 Sr reference source. They took place at ARL before and after the comparison, and at BIPM.

ar af an 23

Details about the measurements and the results are given in the following tables.

a) Medium-energy X rays

- Tables 1 and 2 - Conditions of measurement at the BIPM and the ARL,

- Table 3 Physical constants entering in the determination of X and K,
- Table 4 Correction factors applied to the standards,
- Tables 5 and 6 Uncertainties involved in the determination of exposure rate and air kerma rate,
- Tables 7 and 8 Calibration factors of the transfer chambers determined at the ARL and at the BIPM,

- Tables 9 and 10 Results of the comparison and analysis of the uncertainties,
- Table 11 Comparison with the results of the 1979 comparison.
- b) 60 Co gamma radiation
- Table 12 Physical constants and correction factors entering in the determination of X and K,
- Table 13 Uncertainties in the determination of exposure rate and air kerma rate,
- Tables 14 and 15 Results of the comparison and analysis of the uncertainties.

c) ⁹⁰Sr reference source

- Table 16 - Comparison of measurements of ionization current at ARL and at BIPM.

In the tables the relative uncertainties estimated by statistical methods (type A) are denoted by s_i and correspond to one standard deviation; the relative uncertainties estimated by other means (type B) are designated u_i and correspond also to one standard deviation.

Results

a) Medium-energy X rays

The mean values of the calibration factors for the two transfer chambers are 0.3 to 0.5 % higher at the ARL than at the BIPM (Table 9).

At the BIPM no long-term variation has been observed in the measurement of the ionization current of the two chambers.

An indirect comparison had already been performed in 1979, using one of these chambers (NE 2561-070) as a transfer instrument. At this time the agreement between the calibration factors determined at the ARL and at the BIPM was better than 0.2 %. The difference between the value of R obtained during the two comparisons is 0.4 % at 100, 135 and 180 kV and 0.7 % at 250 kV (Table 9).

Since 1979 the calibration conditions at the ARL have slightly changed: the distance between the X-ray tube and the reference plane is 140 cm instead of 120 cm and the diameter of the beam is 9.5 cm instead of 10.5 cm; however, this probably does not account for the above difference. However, changes have been made to the charge measuring system used with the X-ray beam. In addition, since 1979 the equipment has been completely relocated. As a result some of the calibration conditions may have changed slightly. These changes may account for some of the difference.

b) ⁶⁰Co gamma radiation

The calibration factors determined for the chamber NE 2561-070 at the ARL and at the BIPM are in good agreement (better than 0.1 %).

The chamber NE 2561-194 had to be calibrated on a single day at BIPM. A drift of 0.4 % was observed for a few hours at the beginning of the measurements. The BIPM calibration factor, determined when the ionization current seemed to be stable, differs from the value obtained at ARL by 0.5 %. It would have been preferable to extend the measurements over a longer period.

c) ⁹⁰Sr reference source

As can be seen in Table 16, the ratio of the ionization currents measured at ARL and at BIPM, with chamber 070, does not differ significantly from unity and shows a good stability over a period of about 10 years. The measurements performed with chamber 194 have shown some instabilities.

No significant difference between the measuring devices of BIPM and ARL can thus be observed.

4. Conclusion

For medium-energy X rays, the results of this comparison show a ¹ discrepancy between the values of the calibration factors of the transfer chambers, as determined at ARL and BIPM. In view of the observed change in the response of chamber NE 2561-070 since 1979, further studies on the stability of the instruments will be needed. For ⁶⁰Co gamma radiation, the reported good agreement confirms the adequacy of the standard cavity chamber constructed at ARL.

as any care

X rays (100 to 250 kV)

Conditions of measurement at BIPM

Distance between focal spot and reference plane: 120 cm Beam diameter in reference plane of diaphragm: 10.5 cm

X-ray tube	voltage	(kV)	100	135	180	250
Current		(mA)	5	5	5	5
Additional	filtration	1*	1.2037 mm Al	0.2321 mm Cu	0.4847 mm Cu	1.5701 mm Cu
Half-value	thickness		4.027 mm Al or 0.148 mm Cu	0.494 mm Cu	0.990 mm Cu	2.500 mm Cu
Air attenua coefficier	ation nt,μ/ρ (cr	r2 /g)	0.300	0.198	0.167	0.145

.

* The inherent filtration is approximately 2.3 mm Al.

X rays (100 to 250 kV)

Conditions of measurement at ARL

Distance between focal spot and reference plane: 140 cm Beam diameter in reference plane of diaphragm: 9.5 cm

100 250 X-ray tube voltage (kV) 135 180 Current (mA) 10 10 10 10 ş Additional filtration* 1.17 mm Al 0.21 mm Cu 0.42 mm Cu 1.57 mm Cu + 1.04 mm A1 + 1.17 mm Al + 1.17 mm A1 Half-value thickness 0.14 mm Cu 0.48 mm Cu 1.09 mm Cu 2.72 mm Cu Air attenuation coefficient, $\mu/\rho~(\text{cm}^2/\text{g})$ 0.325 0.234 0.189 0.173

> भ्य भूग तरह हो है। इ.

* The inherent filtration is approximately 2.5 mm A1.

.

X rays (100 to 250 kV)

Physical constants entering in the determination of \hat{X} and \hat{K} at BIPM and ARL

Dry air density (273.15 K,	1.292	99 kg/m ³ *		
W/e **			33.9	97 J/C
Fraction \overline{g} ** of energy lo	st by brem	sstrahlung	:	
voltage	100 kV	135 kV	180 kV	250 kV
g	1•10 ⁻⁴	1•10, 4	2•10 ⁻⁴	3•10 ⁻⁴

11 1

u ng ang

Ĭ

* Value used by ARL: 1.292 9 kg/m³

** See ref. [1].

Х	rays	(100)	to	250	kV)
		•			

Correction factors applied to the ARL and BIPM air kerma and exposure standards

(kV)	100		135		. 18	0	250	
	ARL	BIPM	ARL	BIPM	ARL	BIPM	ARL	BIPM
k sc	0 .9 945	0.9948	0.9957	0.9962	0.9961	0.9967	0.9964	0.9969
^k e	1.0000	1.000	1.0011	1.0023	1.00313	1.0052	1.00528	1.0078
k _s	1.00007	1.0004	1.00006	1.0006	1.00008	1.0005	1.00009	1.0003
^k a	1.0117	1.0100	1.0084	1.0066	1.0068	1.0056	1.0062	1.0048
^k d	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
^k 1	0.9999	0.9999	0.9997	0.9997	0.9994	0 .9997	0.9995	0 .999 6
k p	1.0000	1.0000	1.0000	1.0000	0.999991	0.9999	0.99969	0.9998
k _h	0 .99779	0.998	0.99779	0.998	0.99779	0.998	0 .99779	0 .998
	to		to		to		to	
	0 .998 24		0.99824		0 .998 24		0 .998 24	l
	(kV) k _{sc} k _e k _a k _d k ₁ k _p k _h	(kV) 10 ksc 0.9945 ke 1.0000 ks 1.0117 kd 1.000 k1 0.9999 kp 1.0000 ka 1.000 ka 0.99993 kp 1.0000 kp 0.999779 to 0.99824	INF INF ARL BIPM k _s 0.9945 0.9948 k _e 1.0000 1.000 k _s 1.00007 1.0004 k _a 1.0117 1.0100 k _d 1.000 1.000 k ₁ 0.99999 0.99999 k _p 1.0000 1.0000 k _h 0.99779 0.9988 to 0.99824 Y	VV $ VV $	IND ISD ISD ARL BIPM ARL BIPM k_{sc} 0.9945 0.9948 0.9957 0.9962 k_{e} 1.0000 1.000 1.0011 1.0023 k_{s} 1.00007 1.0004 1.0006 1.0006 k_{a} 1.0117 1.0100 1.0084 1.0006 k_{d} 1.000 1.000 1.000 1.000 k_{h} 0.99999 0.99999 0.99977 0.99977 k_{h} 0.99779 0.9988 0.99779 0.99824	(kV) 100 135 18 ARL BIPM ARL BIPM ARL BIPM ARL ARL ARL k_{sc} 0.9945 0.9948 0.9957 0.9962 0.9961 k_{g} 1.0000 1.000 1.0011 1.0023 1.00313 k_{s} 1.00007 1.0004 1.0006 1.0006 1.0008 k_{a} 1.0117 1.0100 1.0084 1.0006 1.0006 k_{a} 1.0000 1.0000 1.0000 1.0001 1.0001 k_{a} 1.0000 1.0000 1.0000 1.0000 1.0001 k_{a} 0.99999 0.99999 0.99977 0.99977 0.99991 k_{p} 1.0000 1.0000 1.0000 1.0000 0.99979 0.99979 k_{p} 0.99779 0.9988 0.99779 0.99824 to to to 0.99824 0.99824	INU 135 180 ARL BIPM ARL BIPM ARL BIPM ARL BIPM k_{sc} 0.9945 0.9948 0.9957 0.9962 0.9961 0.9967 k_{e} 1.0000 1.000 1.0011 1.0023 1.00313 1.0052 k_{s} 1.00007 1.0004 1.0006 1.0006 1.0008 1.0055 k_{a} 1.0117 1.0100 1.0084 1.0066 1.0068 1.0056 k_{d} 1.000 1.0001 1.0000 1.0000 1.0000 1.0000 k_{p} 0.99999 0.99997 0.99977 0.99994 0.99979 k_{p} 0.99779 0.9988 0.99779 0.9988 0.99779 k_{p} 0.99779 0.9988 0.99779 0.9988 0.99779	(kV) 100 135 180 255 ARL BIPM ARL BIPM ARL BIPM ARL Composite Composite

Ð

X rays (100 to 250 kV)

Estimated relative uncertainties in BIPM exposure rate and air kerma rate (standard deviation, in %)

X-ray tube voltage (kV)	100		135		180		250	
	s _i	^u j	s _i	^u j	si	u j	s _i	u j
$\frac{Physical constants}{dry air density}$ (273,15 K, 101 325 Pa) $\frac{W/e}{g}$ for air kerma		< 0.01 0.15 -		< 0.01 0.15 -		< 0.01 0.15 -		< 0.01 0.15 -
Correction factorsapplied to the standardscattered radiation,scattered radiation,kelectron loss,krecombination losses,air attenuation,kfield distortion,ktransmission throughedges of diaphragm,ktransmission throughwalls of standard,khumidity,k	0.01 0.017	0.07 0.03 ≤ 0.01 ≤ 0.01 ≤ 0.01 ≤ 0.01 0.03	0.017 0.017	0.07 0.03 ≤ 0.01 ≤ 0.01 0.07 ≤ 0.01 ≤ 0.01 0.03	0.01 0.01	0.07 0.06 ≤ 0.01 ≤ 0.01 ≤ 0.01 ≤ 0.01 0.03	/ 0.013 0.01	0.07 0.1 < 0.01 < 0.01 < 0.07 < 0.01 < 0.01 0.03
Measurement of I/vp measurement volume, v ionization current, I corrections concerning ρ (temperature, pressure)	0.007	0.01	0.02	0.01	0.007	0.01	0.007	0.01
Uncertainty on X _{BIPM} quadratic sum combined uncertainty	0.03	0.11	0.03 0.1	0.11	0.03	0.12	0.03 0.1	0.14
Uncertainty on K BIPM quadratic sum combined uncertainty	0.03	0.18 19	0.03 0.	0.18 19	0.03	0.19	0.03	0.21

Æ

X rays (100 to 250 kV)

Estimated relative uncertainties in ARL exposure rate and air kerma rate (standard deviation, in %)

X-ray tube voltage (kV)	100		135		180		250	
	^s i	^u j	si	^u j	s _i	^u j	s _i	^u j
Physical constants dry air density								
(273.15 K, 101 325 Pa)		0.01	ſ	0.01		0.01		0.01
$\frac{W/e}{g}$ for air kerma		0.15		0.15		0.15		0.15
Correction factors applied to the standard								
scattered radiation, k	0.01		0.01		0.01		0.01	
electron loss, ^k e	0.03	0.05	0.03	0.05	0.03	-	0.03	
air attenuation. k	0.1		0.05		0.05		0.05	
field distortion, k _d	0.03		0.03		0.03		0.03	
transmission through		0.01		0.01		0.01		0.01
transmission through								
walls of standard, k		≤ 0.01	1	≤ 0.01		≤ 0.01		≤ 0.01
humidity, k_h^P		0.05		0.05		0.05		0.05
Measurement of I/wp			· · · · · · · · · · · · · · · · · · ·	20	0.00		0.02	
measurement volume, v	0.03		0.03		0.03	Ì	0.03	
corrections concerning ρ	0.015	0.02	0.015	0.02	0.015	0.02	0.015	0.02
(temperature, pressure,)								
Uncertainty on X _{ARL}	0.11	0.12	0.07	0.12	0.07	0.12	0.07	0.13
combined uncertainty	0	.16	0	.14	0	.14	0	.15
Uncertainty on K ARL	0.11	0.10	0.07					
combined uncertainty		.22		20	0.0/	0.19	0.07	0.20
comprised uncertainty	I V	• • • •	1 0	• 20	1 0	•20	I V	• 4 1

æ

X rays (100 to 2	250 kV)
------------------	---------

 $\rm N_{X}$ and $\rm N_{K},$ calibration factors determined at ARL for the transfer chambers NE 2561-070 and 2561-194

X-ray tube	× ARL*	KARL*	Cha (a	amber NE a)	2561-070 (1) * b)	Cha (a	amber NE a)	2561–194 (1	, *)	Relatuncerta	ive inty**
voltage			NX	^N K	NX	^N K	N _X	^N K	NX	N _K	(st. dev	7., in %)
(kV)	(µA/kg)	(mGy/s)	(mg ⁻¹)	(Gy/µC)	on N _X	on N _K						
100	18.4	0.625	2.680	91.05	2.680	91.05	2.668	90.64	2.670	90.71	0.17	0.23
135	15.7	0.533	2.712	92.14	2.713	92.17	2.693	91.49	2.698	91.66	0.15	0.22
180	24.0	0.815	2.720	92.42	2.722	92.48	2.699	91.70	2.702	91.81	, 0 . 15	0.22
250	28.5	0.968	2.730	92.77	2.736	92.97	2.708	92.02	2.712	92.15	0.16	0.22

* Each value of the calibration factors is an average value based on 3 to 9 determinations, each determination being composed of at least five separate measurements.

The values in columns (a) and (b) were determined before and after calibration at BIPM, respectively. The standard deviation of the ionization current for the transfer chambers is of the order of 0.03 %. The difference between the values given in columns (a) and (b) is systematic. This may indicate changes in the instruments due to air travel.

** See Table 10 for a detailed analysis of uncertainties.

X rays (100 to 250 kV)

 $\rm N_{X}$ and $\rm N_{K}$, calibration factors determined at BIPM for the transfer chambers NE 2561-070 and 2561-194

X-ray tube voltage	Date	X * BIPM	K _{BIPM} *	Chamber Ionization current*	r ne 256: ^N X	1070 N _K	Chamber Ionization current*	NE 2561- N _X	-194 ^N K	Relat uncerta (st. dev	cive minty** v., in %)
(kV)		(µA/kg)	(mGy/s)	(pA)	(mg ⁻¹)	(Gy/µC)	(pA)	(mg ⁻¹)	(Gy/µC)	on N _X	on N _K
100	1988-04-14	6.2975	0 . 21 39 5	2.359	2.670	9 0.70)	
		6.2995	0.21402				2.369	2.659	90.34	0.12	0.19
135	1988-04-15	6.1410	0.20863	2.275	2.700	91 . 71	4			0 12	0 10
		6.1395	0.20857				2.284	2.688	91.31)	0.19
180	1988-0418	8.8341	0.30016	3.256	2.713	92.19)	0.20
		8.8345	0.30017				3.283	2.691	91.44	0.13	0.20
250	1988-04-19	11.450	0.38906	4.208	2.721	92.47).	
		11.451	0 .389 11			e ng ma	4,248	2.695	91 . 59)))	0.22

The correction for the leakage current of the transfer chambers was less than 0.1 %. The standard deviation of the ionization current of a transfer chamber was of the order of 0.03 %.

* Each value given in this column is an average based on 30 measurements.

** See Table 10 for a detailed analysis of uncertainties.

eta.

X rays (100 to 250 kV)

Results of the ARL-BIPM comparison $R = (N_X)_{ARL} / (N_X)_{BIPM} = (N_K)_{ARL} / (N_K)_{BIPM}$

X-ray tube]	Chamber 25	561-070	Chamber 2561-194			
voltage (kV)	(N _X) _{ARL} (mg ⁻¹)	(N _X) _{BIPM} (mg ⁻¹)	R *	(N _X) _{ARL} (mg ⁻¹)	(N _X) _{BIPM} (mg ⁻¹)	R *	
100	2.680	2.670	1.0037 ± 0.0021	2.669	2.659	1.0038 ± 0.0021	
135	2.7125	2.700	1.0046 ± 0.0019	2.696	2.688	1.0030 ± 0.0019	
180	2.721	2.713	1.0029 ± 0.0020	2.7005	2.691	1.0035 ± 0.0020	
250	2.733	2.721	1.0044 ± 0.0022	2.710	2.695	1.0056 ± 0.0022	

* See Table 10 for a detailed analysis of uncertainties

•

42

we ∰eres 27 X 1

X rays (100 to 250 kV)

Estimated relative uncertainty on the ratio $R = (N_X)_{ARL}/(N_X)_{BIPM} = (N_K)_{ARL}/(N_K)_{BIPM}$ (standard deviation, in %)

X-ray tube voltage		100		135		180		250	
		si	^u j	^s i	^u j	si	^u j	si	^u j
ARL Measurement of exposure Measurement of air kerm Measurement of the ioni	a zation	0.11 0.11	0.12 0.19	0.07 0.07	0.12 0.19	0.07 0.07	0.12 0.19	0.07 0.07	0.13 0.20
current of chambers NE 2561-070 and NE 256 Measurement of distance Use of monitor chamber	1–194	0.03	0.04	0.03	0.04	0.03 0.01	0.04	0.03 0.01	0.04
<u>Uncertainty on (</u> N _X) _{ARL} Quadratic sum Combined uncertainty		0.11 0	0.13	0.08 0	0.13 15	0.08 0	0.13 .15	0.08 0	9.14 .16
<u>Uncertainty on (</u> N _K) _{ARL} Quadratic sum Combined uncertainty		0.11	0.20	0.08	0.20 22	0.08 0	0.20 22	0.08 0.	0.21 22
BIPM		l	l						
Measurement of exposure Measurement of air kerm Measurement of the ioni	a zation	0.03	0.11 0.18	0.03 0.03	0.11 0.18	0.03 0.03	0.12 0.19	0.03 0.03	0.14 0.21
NE 2561-070 and NE 256 Measurement of the dist	1-194 ance	0.03	0.02	0.03	0.02 0.02	0.03	0.02	0.03	0.02
<u>Uncertainty on (N_X)_{BIPM}</u> Quadratic sum Combined uncertainty		0.04	0.11	0.04	0.11	0.04 0	0.12	0.04 0	0.14 .15
<u>Uncertainty on (N_K)_{BIPM} Quadratic sum Combined uncertainty</u>		0.04	0.18 19	0.04 0	0.18 19	0.04 0.	0.19 20	0.04 0.	0.21 22
Uncertainty on R * Quadratic sum Combined uncertainty		0.12	0.17	0.09	0.17 19	0.09 0	0.18 20	0.09 0.	0.20

* The uncertainties on W/e and g entering in the uncertainty of N_K do not contribute to the uncertainty on $(N_K)_{ARL}/(N_K)_{BIPM}$.

X rays (100 to 250 kV)

Comparison of 1979 and 1988 values of N_{X} (chamber NE 2561-070)

X-ray tube voltage	(N _X) ₁₉₈₈ /(N _X) ₁₉₇₉				
	at ARL	at BIPM			
100	1.0011	0.9970			
135	1.0030	0.9985			
180	1.0035	1.000			
250	1.0031	0.9963			

14 19 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 -1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 -1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 -1945 - 194

430

Ĭ

60 Co gamma radiation

Physical constants and correction factors entering in the determination of $\overset{\bullet}{X}$ and $\overset{\bullet}{K}$ at BIPM and ARL

Physical constants	BIPM	ARL
dry air density		
(273.15 K, 101 325 Pa) (kg/m ³)	1.292 99	1.292 9
	1.000 3	1.000 4
W/e * (J/C)	33.97	33.97
fraction \overline{g} * of energy		
lost by bremsstrahlung	3.2.10-3	$3.2 \cdot 10^{-3}$
$(\mu_{en}/\rho)_{a}/(\mu_{en}/\rho)_{c}$ **	0.998 5	0.998 7

Correction factors applied to the standard

air compressibility,	k z	1.000 2	1.000
recombination losses,	k	1.001 5	1.000 37
humidity,	k _h	0.997 0	0.997 0
			to 0.997 2
stem scattering,	k st	1.000 0	0.998 6
wall attenuation,	kat	1.038 9	1.037 7
mean.origin of electrons,	k _{CEP} * *	0.992 5	0.992 2
wall scattering,	k sc	0.973 5	0.970 3
axial non-uniformity,	kan	0.996 8	0.996 3
radial non-uniformity,	k rn	1.001 3	1.003 0

* See ref. [1]. ** See ref. [2].

⁶⁰Co gamma radiation

Estimated relative uncertainties in the exposure rate and air kerma rate (for BIPM and ARL), and in the ratio of the exposure (or air kerma) rates for the two laboratories

(standard deviation, in %)

	BIPM	ARL	ARL,	ARL/BIPM	
	s ^u j	s. uj	s. i	^u j	
Physical constants					
dry air density	≤ 0.01	0.01		-	
(273.15 K, 101 325 Pa)					
sc,a (for exposure)	0.2	0.3		-	
Sc,a W/e (for air kerma)	0.11	0.11		-	
g	0.02	0.02		-	
$(\mu_{en}/\rho)_a/(\mu_{en}/\rho)_c$	0.05	0.1			
Correction factors applied to the standard				ł	
recombination losses, k _s	0.007 ≤ 0.01	0.01	0.01	0.01	
humidity, k _h	0.03	0.05		-	
stem scattering, k _{st}	0.01	0.02			
wall attenuation, k _{at}	0.04	0.15			
mean origin of electrons, K _{CEP}	0.01	0.05	}		
x_{sc}	0.07	0.10	0.04	0.29	
radial non-uniformity, k _{rn}	0.02	0.03	1		
Measurement of I/vp					
measurement volume, v	0.011 0.03	0.05	0.05	0.03	
ionization current, I	🖌 🙀 🗠 🖓				
corrections concerning ρ	0.018 0.01	0.04 0.02	0.04	0.02	
(temperature, pressure)					
Uncertainty on X					
quadratic sum	0.02 0.24	0.07 0.42			
combined uncertainty	0.24	0.43			
Uncertainty on K					
quadratic sum	0.02 0.17	0.07 0.32			
combined uncertainty	0.17	0.33			
Uncertainty on $\dot{x}_{ARL} / \dot{x}_{BIPM}$ and $\dot{x}_{ARL} / \dot{x}_{BIPM}$					
quadratic sum			0.08	0.29	
combined uncertainty			1	0.30	

Ì

$^{60}\,\mathrm{Co}$ gamma radiation

Result of the ARL-BIPM comparison R = $(N_X)_{ARL}/(N_X)_{BIPM} = (N_K)_{ARL}/(N_K)_{BIPM}$ N_v and N_v, calibration factors of transfer chambers NE 2561-070 and 2561-194

	1	1		1			Relat	ive	
	Date	Ionization	x	ĸ	Nx	N. K	uncerta	ainty**	
	of	current*					(st. dev	v., in %)	R
	measurement	(pA)	(µA/kg)	(mGy/s)	(mg ⁻¹)	(Gy/µC)	on N_{χ}	on N _K	
	(1988)								
Chamber NE 25	561-070							•	
at ARL	March/April	32.420	89.606	0.3054	2 . 764	94.19	0.43	0.34	
at BTPM	12 April	0,9888	2,7269	0.09293	2,758	93,98	0.24	0.18	
	20 April	0.9872	2.7262	0.09291	2.762	94.12	0.24	0.18	$\rangle_{1.0005 \pm 0.0031}$
at ARL	July	32.499	89.672	0.3056	2.759	94.03	0.43	0.34	
	l							· .	/
Chamber NE 2561-194									
at ARL	March/April	32.934	89.606	0.3054	2.721	92.72	0.43	0.34	
at BIPM	13 April	0 .997 0	2.7260	0.09290	2.734	93.18	0.26	0.20	0.9954 ± 0.0033
at ARL	July	32.945	89.672	0.3056	2.722	92.76	0.43	0.34)

* At BIPM the correction for the leakage current of the transfer chambers was up to 0.2 %. Each value given in this column is an average based on about 60 measurements for chamber NE 2561-070 (standard deviation = 0.03 %) and 30 measurements for chamber NE 2561-194 (standard deviation = 0.1 %).

At ARL the leakage current corrections were negligible. The values were obtained over several days and are all corrected to the common date of 1 April 1988. They represent the mean of 5 determinations each based on 30 measurements for the values taken pre-BIPM, and the mean of 19 determinations based on 10 measurements for those taken post-BIPM.

at the stars

** See Table 15 for a detailed analysis of uncertainties.

⁶⁰Co gamma radiation

Estimated relative uncertainties of the calibration factors N_X and N_K (determined at ARL and BIPM), and of R = $(N_X)_{ARL}/(N_X)_{BIPM} = (N_K)_{ARL}/(N_K)_{BIPM}$

(standard deviation, in %)

	ARL		ВІРМ		ARL/BIPM	
	s_i	^u j	s _i	^u j	s _i	u. j
					/ <u> </u>	
Measurement of exposure	0.07	0.42	0.02	0.24	0.08*	0.29*
Measurement of air kerma	0.07	0.32	0.02	0.17	1)	
Measurement of ionization current	0.06	0.04	0.03**	0.03	′ 0 . 07	0.05
of chambers NE 2561-070 and NE 2561-194						
Measurement of distance	_	0.02	-	0.01	-	0.02
s.]]		
Uncertainty on N_v						i
Audratic Sm	0.09	0.42	0.04	0.24	ľ	
Combined importants	0.05	/2	0.04	24		
combined uncertainty	0	•4J ,		•2-7		
Uncertainty on N		[1		
<u>encertearney on</u> K						
Quadratic sum	0.09	0.32	0.04	0.1/		
Combined uncertainty	0	•34	0	. 18		
Uncertainty on R						
Quadratic sum					0.11	0.29
Combined uncertainty					0.	.31
			-		•	

* See Table 13.

** For chamber 194 this uncertainty amounts to 0.1 % to take into account the drift of the ionization current at the time of the calibration. The relative uncertainties on N and N determined at BIPM are 0.26 % and 0.20 %, respectively, and that on R is 0.33 %.

w 👷 🕬

23 2

-

Comparison of the ionization currents measured at ARL and at BIPM with the $^{90}{\rm Sr}$ reference source

1		ARL DA)	I _{BIPM} (pA)	I _{ARL} /I _{BIPM} *		
	(1)	(2)				
Chamber 070	29.377 ± 0.002	29.378 ± 0.003	29.384 ± 0.015	0.9998 ± 0.0005		
Chamber 194	30.032 ± 0.004	30.006 ± 0.015	30.068 ± 0.015	0.9984 ± 0.0007		

Ĭ

The values of the ionization current are given for 1988-04.01.

The values in columns (1) and (2) were determined before and after the measurements at BIPM, respectively.

277 2

w where

The uncertainties represent one standard deviation (1σ) .

* In 1979 this ratio was 1.0004 for chamber 070.

.

References

- [1] BIPM, Constantes physiques pour les étalons de mesure de rayonnement, <u>in BIPM Com. Cons. Etalons Mes. Ray. Ionisants, Section (I) 11,</u> 1985, p. R 45 (Offilib, 75240 Paris Cedex 05)
- Hubbell, J.H., Photon mass attenuation and energy-absorption coefficients from 1 keV to 20 MeV, Int. J. Appl. Radiat. Isot. <u>33</u>, 1982, pp. 1269-1290.

23 X

w of our

Ĭ

(December 1989)