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Abstract 

By a detailed evaluation of T1 (8,E), the transmission 
factor appearing in the description of a series arrangement 
of two dead times, it is shown that formulae obtained 
previously by heuristic arguments are indeed valid, 
provided that the ratio of the dead times remains within 
certain limits. 

1. Introduction 

A simple and useful way of treating series arrangements of two dead times 
is based on the concept of a so-called transmission factor T1 (see e.g. 
[1]). This quantity describes in a quantitative manner the additional 
effect produced by the first dead time on the observed count rate. In 
the general situation, sketched in Fig. 1, both dead times are of the 
generalized type, i.e. described by the two parameters ~ and 8. 

p ~ R 

Fig. 1. Basic notation used for the arrangement 
of two dead times in ser,ies • 

.,~ ".,,. ,-~. 

For ~1 = 0, i.e. when there is a single dead time, the relation between 
input and output count rates is described by 

R = ( 1) 

If the input series forms a Poisson process (as we shall assume in what 
follows), the transmission factor T2 is a known function of p, ~2 and 82 • 

For a series arrangement we write similarly 

R = 

For a given second dead time, the new transmission factor T1 is a 
function of p, ~1 and 81• 

(2) 
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It will be practical to change the notation slightly by putting 

1:2 and x = p1: 

with 0 ~ a ~ 1. T1 then turns out to be a function of x, a, 91 and 92 • 
For the sake of simplicity, we omit x and a as arguments and write 
T1 = T1 (91 ,92 ). 

now particularly interested, the second For the case in which we are 
(and larger) dead time is of 
and T1 = T1(9,E), putting 91 

the extended type. We then have T2(E) = e-x 

9. 

For the series arrangements of traditional types, the transmission 
factors T1 are known. From them we have recently deduced [2] the first 
terms of a series development which should be valid for an arbitrary 
91 = 9. As the reasoning applied there was based on some assumptions, 
it may be useful to look for an independent confirmation. This is done in 
the present report where we derive, for 92 = 1, the transmission factor 
T1 up to fourth order. The procedure takes advantage of a general feature 
valid for an extended dead time. 

For simplifying the calculations, we shall in what follows always assume 
that the dead-time ratio a = 1:1 /1:2 does not exceed the value 1/4. 

2. Counting losses due to an extended dead time 

Let us start by considering an arbitrary renewal process which is 
described by its interval density f(t). Then the average time t between 
two successive events of this process is given by 

co 

f t f (t) dt • (3) 

o 

and its reciprocal 1/~ is called the count rate r. 

We now want to describe the effect of an extended dead time of length 1: 
which is ~nserted in this process. WhB~e·,the d,istortion produced on the 
interval density is in general difficult to describe, it happens that the 
effect on the count rate can be readily expressed in a general manner. 
This is due to the fact that, for this type of dead time, all events 
which follow each other by a time interval of less than 1: are suppressed. 
Therefore, the relative count-rate loss L produced by an extended dead 
time 1: is given by the simple relation 

1: 

L f f(t) dt • (4) 

o 

The output count rate R is therefore reduced to the value 

R r (1 - L) , (5) 

where r denotes the input rate. 
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The above relations are of such an elementary form that it should be 
possible to apply them to relatively complicated input processes. In 
particular, an important application might be given by the case where the 
input process is assumed to have alreaqy undergone a distortion, namely 
by a previous "first" dead time 1:' which we may suppose to be of the 
generalized type (involving the parameter 0 ~ e ~ 1) described 
previously. In this situation, the evaluation of R would in fact 
correspond to the explicit determination of an output rate for an 
original process which has passed through a series arrangement of two 
dead times as sketched in Fig. 2. 

p ~ 
(Poisson) 

1:' =a1:, e 11---r---IL.._1:_,_E_---II-~~~- R 
. f(t) 

Fig. 2 - Notation used for the series arrangement of two dead times, 
where the first is of the generalized type and the second is 
assumed to be extended. 

If the original input process, of rate p, is taken as Poissonian 
(an assumption which can be shown to be realistic in many practical 
situations), then both the count rate r and the interval density f(t) 
after the first dead time 1:' are well known. Indeed, for an original! 
input rate p and a dead time of length 1:' and parameter e the output is 
known to be [3] 

ep 
r (6) 

The density f(t), valid between the two dead times, is in fact the 
interval density after a generalized dead time, and this has been derived 
previously in [4]. It turns out that the later developments can be 
slightly simplified by using the form given in [5], which is (for e > 0) 

J 1 1-e 
\' [- A" + (-) B· .• ] L J." .... 'J' 

j=1 e . e . 
f(t) 

where J denotes the largest integer below t/1:'. The coefficients are 
given by 

ep 
= 

(j-1) ! 
J"-1 e-J" ep1:' (-eT

J
") and 

with Tj = p(t-j1:'). Note that both Aj and Bj vanish if Tj < 0, 
Le. for j1:' > t. 

(7) 

(8) 
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It will be useful to have some explicit forms available for the first few 
of the coefficients appearing in (7). In order to simplify the notation 
we introduce the abbreviations 

9p <XX = x' 
and 

ex = x ex' = x' 
This then leads with (8) to 

A2 

A3 

A4 

~ -~x' = p e 

= _ 152 (t-2't' ) e -2x' 

1 ~3 3~' = (t-3't,)2 e- x -p 
2 

, 

, 

1 ~ 
(t-4't' )3 -4x' _ _ p4 e 

6 
etc. 

Likewise one finds for the first coefficients Bj 

= 

= 

P 93 e-3x' {e-p(t-3't') - ~ p2(t-3't,)2 + p(t-3't') - 1} , 
2 

P 94 e-4x' {e-p(t-4't') + ~ p3(t-4't,)3 
6 

(9) 

(10) 

(11) 

1 
- - p2(t-4't')2 + p(t-4't') - 1}, etc. 

2 

Since the output rate R, given by (5), can be written as 

9p .' ~'t" . 

R = [1 - J f(t) dt] (12) 
e 9p't' + 

, 
9 - 1 't' 

our main problem is now the practical determination of the loss 
't J 1-9 

L = J f(t) dt I [~ JAj dt + - JB. dt] 
't' j=l 9 9 J 

1 1-9 
(13) 

- - I p. + (-) Iq· 
9 . J 9 j J 

J 

thus of the quantities Pj and qj. 
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3. Evaluation of Pj 

In view of (13) and (8) the quantities Pj are given by 

thus 

'" 
= 

• 
J A. dt 

. , J 
J. 

= p '" j-l e-jx' 
(j-l)! (-p) 

P '" (. - J .• ,)j ___ (_p)j-l e-jx' = 
(j-l)! j 

'" 
= ~ (_x)j-l e-jx' (l-ja)j 

j! 

(-x -x' j (l-ja)j 
= - e ) ., J. 

explicitly 

'" (I-a) -x' 
PI = x e 

1 '" 
P2 = - _ (1-2 a)2 x 2 

2 
e -2x' 

P3 = 1 3 
- (1-3a) x 3 e -3x' 
6 

, 

= - 1 4 x4 -4x' 
P4 - (1-4a) e 

24 

• J (t-j.,)j-l dt 
j.' 

etc. 

Since in (14) the term 1 - ja must remain positive, this limits the 

(14) 

(15) 
f 

size of the dead-time ratio a. If we assume a < 1/4, all the expressions 
up to P4 are meaningful. This remark also holds for the coefficients 
qj of the following section. 

4. Evaluation of qj 
.,.1 I>f/" .-~. 

In a similar way we can determine the 'coefficients qj appearing 
in (13) by means of (8) as 

• • 
qj J Bj dt = p(e e -x' ) j { J e-p(t-j.') dt 

j.' j.' 
j-l (_I)k • 

+ (-I)j L j-l-k J (t_j.,)j-l-k dt} p 
k=O (j-l-k) ! j.' 

Since 

• 1 ~ [1 - e-x (l-ja)] e jx ' J e-pt dt = e jx ' _ (e-jx' - e-X ) 

j.' p p 
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we can write 

= P 8j e-jx' {.: [1 - e-x (l-ja)] 
p 

j-1 (_l)k x j - k o_k 
+ (-l)j L -- (l-ja)J } 

k=O (j-k)! P 

~, 0 j-1 [-x(1-ja) ]j-k 
(8 e-x )J {I - e-x (l-ja) + L } 

k=O (j-k)! 

Explicit expressions are 

8 e -x' [1 - e -(1-a)x - (l-a)x] , 

82 e-2x' [1 - e-(1-2a)x +.: (1-2a)~2 - (1-2a)x] 
2 

83 e-3x' [1 - e-(1-3a)x - .: (1-3a)3x 3 
6 

122 ] + 2 (1-3a) x - (1-3a)x , 

1 
- e-(1-4a)x + _ (1-4a)4x 4 

24 

1 1 
- - (1-4a) 3x 3 + _ (1-4a) ~ 2 - (1-4a)x] , 

6 2 

5. Series developments 

(16 ) 

(17) 

etc. 

Since we wish to have the transmission factor T1 in the form of a series 
expansion in powers of x and because, according to (13), the 
determination of the loss L requires a summation over the coefficients p j 
and qj' owe now have to evaluate the.in"series;':developm~nts, for which 
we decide to proceed as far as order x4 (or likewise x4, etc.). 

For Pj we then obtain from (15) 

P2 

(I-a) [x - a x2 +.: a2 x3 - .: a3 x4] 
2 6 

- .: (1-2a/ [x2 - 2a x 3 + 2a2 x4] 
2 

1 
P3 - '6 (1-3a)3 [x3 - 3a x4] , 

1 4 
- - (1-4a) x4, 

24 
etc. 

(18) 
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For their sum this leads to 

1 _ x (l-a) - x2 [a(l-a) + - (1-2a) 2J 
2 

1 1 
+ x3 [- a2 (l-a) + a(1-2a) 2 + - (1-3a) 3J 

2 6 
111 
[- a3 (1-a) + a2(1-2a) 2 +- a(1-3a) 3 +- (1-4a)4J 
6 2 24 
1 1 x (l-a) - - X'2 (1-2a+2a2) + _ X'3 (1-3a+6a2-6a3 ) 
2 6 

(19) 

Analogous developments for qj' given by (17), yield (again up to fourth 

order), after some lengthy rearrangements, 

1 1 
'" - 8 (1-a)2 [x 2 - - (1-a+3a8) x3 

2 3 

_ .: 82 (1-2a) 3 
6 

1 
+ - 0-2a+4aSt-a2-4a29+6a282) x4 J , 

12 

1 
[x 3 - - (1-2a+8a8) x4 J 

4 

1 
_ - _ 83 (1-3a)4 x4 • 

24 

For their sum one finally arrives at the result 

1 
8 (1-a)2 x 2 

2 

+.: 8 [1+8 - 3a(l+8) +"3~2'(l+2e); - a3(1+S8) J x 3 
6 

f 

(20) 

(21) 
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By substitution of (19) and (21) in (13), the loss L can be seen to be 
given (up to fourth order in x) by 

L 
1 1 

(I-a) x - - 9 (1-2a+2a2 ) x 2 + - 92 (1-3a+6a2-6a3 ) x 3 
2 6 

~ 9 3 (1-4a+l2a 2-24a3+24a4 ) x4 
24 

1 1 
+ (1-9) {- - (l-a)2 x 2 + - [(1+9 - 3a(I+9) + 3a2(1+29) - a3 (1+59)] x 3 

2 6 
1 

- - [1+9+92 - 4a(I+9+92) + 6a2(1+29+29 2) 
24 

This can be rearranged to yield 

L 

6. Application to Tl 

We now have at hand all the elements needed for the evaluation of the 
transmission factor which, according to (2) and (5), is given by 

R r 
= - eX (1 - L) 

P 
Tl (9,E) 

(22) 

(23) 

The explicit multiplication of the respective series expansions is quite 
elementary, but rather cumbersome. As a first step we can use a series 
development of (6) given previously (eq. 8 in [3]). This leads to 

r x 
-e -
P 

. {I -
1 2x 2 L 2 a3x 3 ax+ (1 - - 9) a -" (r"';;'9 + - ,'9 ) 
2 6 

3 7 2 1 
a4x4} + (1 - - 9 +- 9 - _ 93 ) • eX 

2 12 24 

1 
1 + (1- a) x +- [1- 2a+ (2-9)a 2 ] x 2 

2 

1 
+ - [1 - 4a + (12-69)a2 - (24-249+49 2)a3 

24 

(24) 
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The final multiplication with 1-L, where L is taken from (22), is again 
somewhat tedious. Since many terms cancel, the final result is 
nevertheless quite simple. Thus, for the required transmission factor 
we end up with the expression (up to fourth order and for a ~ 1/4) 

1 1 
1 + - (ax)2 - - (1 - 29) (ax)3 

2 3 
1 

+ -- (9 - 119 + 1192) (ax)4 , 
24 

which is the main result of the present study. 

The two special cases 9 = 0 and 1 can serve as welcome checks. 
They lead to 

1 1 3 
T1(N,E) - 1 +- (ax)2 - _ (ax)3 + _ (ax)4 and 

2 3 8 

1 1 3 
T1(E,E) - 1 + _ (ax)2 + _ (ax)3 + _ (ax)4 

2 3 8 

(25) 

(26) 

The two results given in (26) are in agreement with what we know from 
previous studies [6]; the second requires a ~ 1/4 whereas the first is 
valid for any value of a. 

More important is the fact that (25) fully agrees with the result given 
in [2], confirming thereby the correctness of the heuristic procedure 
applied previously. The new contribution of fourth order is particularly 
instructive since it proves that the equality of the corresponding terms 
in (26) is only accidental and must not be interpreted as indicating an 
independence of 9. 

Unfortunately, we know of no similar general method which would also allow 
us to derive T1(9,N) to higher order. 

We should note that for larger dead-time ratios a, the coefficients 
appearing in a series expansion of the form given in (25) are in general 
more complicated as they depend on tge .. 1.pcation of a (e.g. between 1/2 and 
1/3). They will be evaluated in a subsequent report. 
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APPENDIX 

A closer look at T1 for a =1 

The special situation where the two dead times in a series arrangement are 
of equal length 1:, but not necessarily of the same type (described by 9), 
can be used for a simple reasoning which we shall describe below. 

Fig. Al - Schematic arrangement of two generalized dead times 
of equal length. 

Let us first recall that the second dead time can have no effect at all 
on a sequence of pulses if in length it is smaller than (or equal to) 
a preceding one: the loss, and hence the output count rate R, is uniquely 
determined by the first dead time. Fig. Al illustrates the special case 
where a = 1:1/1:2 = 1. 

If T(9) is the transmission factor corresponding to a (single) generalized 
dead time (1:,9) and if the transmission factor T1 , when only valid for 
a = 1, is denoted by 1T1' then it follows from Fig. Al that the output 
count rate R is given by 

(AI) 

This leads to the relation 

(A2) 

We know from previous studies - using, for instance, eqs. 8 and 7 in [3], 
with T =. z/x - that ., V'-" ;" 

1 - x + (1 
1 

91 ) x 2 
2 

37 2 + (1 - - 91 + '- 91 2 12 

and likewise for the reciprocal 

(1 

1 
9f) x'+ 

24 

III 
1 + x + - 92 x 2 + - 92 x 3 + - 92

3 x'+ • 
2 6 2 24 

(A3) 

(A4) 
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1T1 is now simply obtained by multiplying (A3) with (A4), and this leads, 
after some rearrangements and up to fourth order in x, to 

1 2 1 [ 2 2] 3 1 - 2 (91-92) x + 6 3(91-92)-91+92 x 

- ~ [12(91-92)-109t+49~+9i-9i+69192] x4 • 
24 

From this general formula a number of special cases can be readily 
obtained. Thus, for 92 = 0 or 1 we find (with 91 = 9) 

1 1 1 
(12-109+92) x4 1T1(9,N) - 1 - - 9 x 2 + - 9 (3-9) x 3 - - 9 

2 6 24 

and 

Or, by putting 

we can also write instead of (AS) 

1 1 
1 - - 6 x 2 + - (36 - 9i + 9~) x 3 

2 6 
1 

- - [126 - 362 - 7(9t - 9~) + 9i - 9~] x4 • 
24 

In particular, this leads 

- for 6 = 0 to 

- for 6 ± 1 to 

;'.: 

111 
1 - - 6 x 2 + - 6 x 3 + - (1 - 26) x4 
238 

(AS) 

(A6) 

(A7) 

(A8) 

(A9) 

(A10) 

(All) 

While (A10) is certainly correct, but rather trivial, (All) is of some 
interest for checking purposes as it contains the expansions 
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1 1 1 
1T1 (E,N) - 1 - _ x 2 + _ x 3 - _ x4 

2 3 8 
and 

1 1 3 
1T1(N,E) - 1 + _ x 2 - _ x 3 + _ x4 

2 3 8 

It can also be readily seen from (A2) that 

1 • 

All this is clearly consistent with the known exact expressions [6] 
which are (for a = 1) 

1T1(E,N) 1Tl1(N,E) (1+x) e-x 

1 
One 'can also show that, for - ~ a ~ 1, there is 

2 

1 
1 + - (1 - a) (3a - 1) x 2 

2 

In the limit a = 1 we thus have indeed 1T1 
(A10) • 

1, in agreement with 

(A12), 

(A13) 

(A14) 

(A15) 

(A16) 

Unfortunately, (AS) cannot be readily used as a guideline for establi,hing 
the structure of a general formula for T1 (81 ,82 ) since it will, as a rule, 
depend on the exact region in which a is located, a feature which is well 
known from the special cases T1(N,N) and T1(E,E). 
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