
Rapport BIPM-87/3 

BUREAU INTERNATIONAL DES POIDS ET MESURES 

Anelasticity of Cu-Be at very low strain frequencies 

preliminary measurements 

by T.J. Quinn and C.C. Speake 

PAVILLON DE BRETEUIL 
, 

F-92312 SEVRES CEDEX 



Abstract 

Bureau International des Poids et Mesures 

Rapport BIPM-87/3 

Anelasticity of Cu-Be at very low strain frequencies 

preliminary measurements 

by T.J. Quinn and C.C.Speake 

This note reports the preliminary results of a study of the 

anelasticity of a Cu - 1,8 % Be alloy at strain frequencies between 10- 2 

and 10- 3 Hz. The measurements were made using a vertical dumb-bell 

pendulum suspended near its centre of mass by a flexure pivot made from 

the Cu-Be alloy under test. Unexpectedly large anelastic effects were 

found at the lowest frequencies. A mechanism explaining the observed 

behaviour is proposed based upon a hierarchical relaxation process 

having a continuum of relaxation times. Further measurements are 

underway. 

1. INTRODUCTION 

The presence of small anomalies in the behaviour of the BIPM 

flexure-strip balance(l) led us to think that the flexure might be 

showing signs of anelasticity. The complexity of the balance, however, 

made it difficult to carry out a study of the anelastic behaviour of the 

flexure pivot alone. A sabbatical year at the Cavendish Laboratory, 

Cambridge, gave one of us (TJQ) the opportunity of building an apparatus 

that was specifically designed to study anelasticity. This was a 

vertical dumb-bell pendulum suspended near its centre of mass by a Cu-Be 

flexure pivot of the type developed for the BIPM flexure-strip balance. 

The anomalies observed in the behaviour of the balance appeared to be 
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consistent with the presence of a small anelastic after effect following 

an angular displacement of the beam of about 6 x 10- 5 radians. The 

recovery time of the effect appeared to be about five minutes. The aim 

of the experiments at Cambridge was, therefore, to look for and if 

possible measure, the anelastic behaviour of a Cu-Be flexure under 

similar conditions of tensile stress and in a similar frequency range to 

those observed at BIPH. 

The flexure strips in question were made from a precipitation

hardened Cu - 1,8 % Be alloy made by Telcon Metals Ltd. under the trade 

name Be 250. The strips were 50 ~ thick, 2 mm long and 20 mm wide and 

were made from a solid block of alloy as shown in Fig. 1 and described 

in reference (1). When used in the balance the strip supports a mass of 

about 4 kg which leads to a stress in the strip of about 5% of the yield 

stress. 

We were unable to find reports of any previous work in which the 

anelasticity of Cu-Be had been examined under conditions remotely 

resembling those of interest here. Practically all previous studies of 

the anelasticity of similar Cu-Be alloys had been carried out at much 

higher frequencies and after strain cycles of much larger amplitude. 

2. THE PENDULUM 

The pendulum is shown in Fig. 2. It consists of two thin walled 

aluminium alloy (duralumin) tubes (A & B) supporting at their 

extremities 1,2 kg phosphor-bronze balls (C & D) and joined at the 

centre to a duralumin piece (E) designed to rest upon the flexure pivot. 

The flexure pivot in turn rests on a duralumin block (F) as shown in 

Fig. 3. Fig. 4 shows the pendulum in place resting on the flexure 

pivot. 

The upper phosphor-bronze ball is enclosed in a cap (G) in Fig. 5 

that carries a pair of flat plates (H), used in the capacitance 
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position sensor and for electrostatic servo control. Concentric with 

the pendulum is a rigid duralumin cylinder (J) which carries two pairs 

of fixed electrodes (K) and (L) for the position sensor and 

servo-control. 

The whole of the pendulum is enclosed in a stainless steel vacuum 

chamber (Fig. 6). Preliminary pumping is by means of a rotary pump and 

then a sorption pump. During operation the pressure is maintained below 

about 10- 4 Pa by an ion pump. 

Adjustment of the period of the pendulum can be made from outside 

the vacuum chamber through the rotary lead-through (M in Fig. 6). This 

can engage a nut on a screw protruding from the lower end of the 

pendulum and so raise or lower the centre of mass of the pendulum by a 

small amount. In this way the period could be adjusted in the range 

from 125 s to 690 s. 

The centre base plate upon which the pendulum was mounted served 

as the main supporting plate for the vacuum chamber. It was also 

connected to a platform resting on a steel frame attached to concrete 

blocks on the floor of the laboratory. The platform could be adjusted 

in level by the three micrometer screws upon which it rested. On the 

top of the vacuum chamber a microscope was mounted by means of which the 

amplitude of free oscillation of the pendulum could be observed through 

a glass window which formed the top of the vacuum chamber. Below the 

vacuum chamber a 14 kg phosphor-bronze ball was mounted on a rotatable 

platform. This was used for calibration of the servo-system by 

providing a known gravitational attractive force to the pendulum. 

3. THE SERVO-CONTROL 

The position of the top of the pendulum with respect to the fixed 

cylinder (Fig. 5) was measured using a capacitance transducer. Servo 
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control was carried out by means of electrostatic forces applied to the 

plates fixed to the pendulum. The servo control was designed to provide 

proportional differential and integral control and incorporated various 

features required for the two different types of measurement described 

below. The pre-amplifier was mounted as close as possible to the 

pendulum and was attached near the top of the vacuum chamber. 

4. THE MEASUREMENTS 

The whole mechanical and electronic system was designed with two 

types of measurement in view. The first was a measurement of the decay 

of the amplitude of free oscillation and the second was the measurement 

of the anelastic after effect following angular offset of the pendulum. 

4.1.- Elementary theory of the decay of free oscillations 

Let us assume the the equation of motion of the pendulum is given 

by 

I e + (c - mgh)e o (1) 

where I is the moment of inertia about the axis of rotation, c the 

flexure stiffness of the suspension, m the mass of the pendulum and 

h the distance of its centre of mass above the centre of rotation. 

The stiffness of the flexure is given by (1) 

c = (WEH)~ cosech al (2) 

where W = mg, E is Young's modulus, H is the second moment of area of 

the flexure cross section, a = (W/EH)~ and 1 the length of the flexure. 
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In the presence of anelasticity we can write 

and thus 

E :::0 Eo + it:. 

~ it:. 
c = (WEaR) (1 + 2E) 

ca(l + it:.) 
2E 

Equation (1) becomes 

Co t:. 
where 0 = """2E. 

Thus 

I 9 + (co - mgh) 9 + i69 = 0 

Let 9 = e (iw-y)t 

i6 ca-mgh 
(iw-y) 2 + - + = 0 

I I 

from which we can deduce that 

o 
y = 2Iw 

We define the loss coefficient ~ by 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

where An and An+1 are the amplitudes of successive oscillations of the 

pendulum. We can, therefore, deduce that 

1 e- yt yT 
~ = - log [ ] = -

'It -y(t+T) 'It 
e 

(11) 

or (12) 
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Measurements of ~ as a function of frequency w can thus give 

information on 6. As we shall see, it was observed that ~ increased as 

1/w2 implying that 6 was independant of frequency. However, according 

to the theory of a generalized susceptibility 6 must be a function of 

frequency. This is discussed in Section 5. 

4.2.- Experimental results 

The results of the measurements of ~ are shown in Fig. 7. These 

were obtained from measurements of the decay of free oscillations in the 

frequency range from 5 x 10- 2 to 9 x 10- 3 rad s-l (periods from 125 s to 

690 s). The amplitudes of oscillation of the pendulum were of the order 

of 1 mrad and no amplitude dependency of ~ was observed. Since, 

however, the measurements of amplitude were made visually and were very 

tedious, no systematic investigation of amplitude dependency was made. 

In order to check that the mechanism which led to the observed w- 2 

dependency of ~ was a bulk property of the flexure material and not a 

surface property due to surface damage on grinding, a layer 5 ~ thick 

was electrolytically removed from the surface and a second set of 

measurements made. There are also shown in Fig. 7 and it is clear that 

they do not differ significantly from the first set. 

The depth of surface damage was estimated to be of the order of 

5 ~ from measurements of micro hardness made on eu-Be strips 

manufactured in the same way as the flexures. A significant increase in 

hardness was found that did not extend below a depth of about 5 ~. 

We conclude, therefore, that what we observed was a bulk property 

of the alloy. 
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4.3.- The anelastic after effect, results of experiments 

In the presence of anelasticity a stress introduced into the 

flexure by applying an offset to the pendulum does not immediately 

disappear on removal of the offset. Instead, a residual stress, ~, is 

observed that dies away with a characteristic decay time. This is 

illustrated in Fig. 8. ~ is known as the anelastic after effect, 

which, in the case of the standard-linear solid is given by 

(13) 

where A is the magnitude of the offset, T the time for which it is 

maintained and TO is the time constant of the decay of~. The 

anomalies observed in the behaviour of the flexure-strip balance were 

considered to be due to the presence of such an anelastic after effect. 

The experiments made with the pendulum consisted of the 

application of angular offsets to the pendulum of about one milli-radian 

for periods of between one minute and two hours and the observation of 

the return to equilibrium of the servo voltage after abrupt removal of 

the offset. The servo control was such that on removal of the offset 

the pendulum returned to its original position to within about 10- 8 rad 

after only a few seconds. 

The magnitude of the anelastic after effect was established by 

calibration of the system using the gravitational attraction of a 14 kg 

phosphor-bronze sphere. The sphere was placed on a rotating table close 

to the lower ball of the pendulum. On rotating the table so that the 

sphere moved from one side of the pendulum to the other a change in 

torque of 4,5 x 10- 8 Nm took place. 

Two series of measurements of ~ as a function of T were made, one 

with an offset of 1,5 x 10- 3 rad and one with an offset nearly twice as 
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large, 2,9 x 10- 3 rad. As expected, the magnitude of ~ appeared to 

increase linearly with the size of the offset. Fig. 8 shows the results 

of all the measurements that were made. The results were first of all 

fitted to an equation of the form given in (13) with 

A = 9.[1,1 x 10- 4 Nm rad- 1] where 9 is the angle of offset and To' the 

time constant, equal to about 18 minutes. 

Examination of the chart recordings, however, led to the 

conclusion that a simple exponential decay of the anelastic after effect 

was probably not what was observed. The short term decay lasting about 

5 minutes appeared to follow an exponential curve, but this was followed 

by a much slower decay that lasted at least 30 minutes. 

We suggest that this behaviour might be due to the particular 

conditions of the experiment, namely, that the very small changes in 

strain, resulting from the offsets, take place in the presence of the 

much larger continuous strain resulting from the weight of the pendulum. 

In the presence of this continuous stress it may be that the decay of 

the anelastic after effect takes place in a hierarchical regime in which 

successive levels of dislocation unlocking occur. Were this to be the 

case the simple exponental decay predicted by equation (13) would no 

longer be observed. 

5. AN ANELASTIC SOLID HAVING A CONTINUUM OF RELAXATION TIMES 

5.1.- Mathematical model 

A material which has a single relaxation process can be 

represented by the Maxwell model shown in figure 9a and it can easily be 

shown that the following relationship exists between an applied stress, 

0, and the resulting strain, £, 

£ E + £1: (E + OE) (14) 
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where E is the relaxed modulus, oE is the modulus defect and the 

relaxation time constant, ~, is given as the ratio of the dashpot 

viscosity and oE. For what follows it will be convenient to express 

equation 14 in terms of Laplace transforms with the Laplace variable s, 

o s~ 
E + E 1 + s~· (15) 

Unfortunately, as was seen in Section 3, such a simple model is 

inadequate for describing the behaviour of the beryllium-copper 

flexures. Instead, we shall consider the model illustrated in figure 9b 

where an infinite number of spring-dashpot combinations have been added 

having a continuum of relaxation time constants, up to a maximum (~~) 

and each having an equal relaxation amplitude (oE/~). Equation 15 can 
~ 

now be expressed in terms of an integral 

o(s) 
£(s) E + oE s~ d~ 

1 + s~ ~ 
~ 

(16) 

Using the above expression with the appropriate Laplace variable we can 

calculate the modulus relaxation in response to sinusoidal excitation 

(free oscillation of the pendulum) or static changes in angular 

deflection of the flexure. In either case we can substitute the 

appropriate form of the modulus calculated using equation 16 into the 

usual expression for the flexure restoring torque, equation 2. 

Co = (WEH)~ cosech (a!) (17) 

In the approximation that the anelastic component of the modulus (the 

second term is equation 16) is much smaller than E and that al »1, we 

can write 

t (18) 

o 
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5.2. The anelastic after effect 

If the flexure is subject to a step deflection e(t) as follows 

e(t) 0 t < - T (19a) 

e(t) eo -T<t<O (19b) 

e(t) = 0 o < t (19c) 

which implies 

eo sT 
e(s) = - e -T<t < O (19d) s 

eo 
(esT _ 1) e(s) =- o < t, (1ge) s 

then we can calculate the torque required to maintain zero deflection 

as 

c(t) 

and c(t) 

1 . -
't 

0) 

't 
fIX> e -(t+T)/ 'td't 

o 

for - T < t < 0 

for o < t 

It can be shown that the integrals can be calculated as 

loo e -th d, = 1 '00 e -tl<oo + t E1(-tl<00») 

o 

where Ei(-t/'t ) is the exponential integral function. IX> 

(20a) 

(20b) 

(21) 



- 11 -

5.3.- The dynamic damping due to anelasticity 

The differential equation describing the free oscillation of the 

pendulum, equation (1), can be written as 

18 + (Wh + co(s»)8 o (22) 

If we again suppose a solution for free oscillation 

8 80 e S 
t with s = i w - Y (23) 

where w is the angular frequency of free oscillations and y-l is the 

characteristic time of the decay of oscillation amplitude, then, on 

substitution of equation 23 into equation 22, we obtain the 

characteristic equation, 

o (24) 

After evaluating the integral in equation 16 this becomes 

2 DE 
I(iw-y) + Wh + Co + Co 2E 

1 J't _ In( l + (f ur y) 'teJ \= O. 
1 co (iw- y) 

(25) . -

Taking the imaginery part of this equation we can numerically solve for 

y(w) and then calculate the logarithmic decrement 

!::re 
w 

(26) 

5.4.- Comparison of theory with experiment 

Figure 10 shows an experimental curve of the type given in equation 
CODE 

20b with values of 't(l) and ~ chosen to give the best fit to one of the 

experimentally observed curves (P of Fig. 8). The values 't 2,2 x 10 3 s 
co 

CODE 
and ~ = 1 x 10-4 Nm rad- 1 result in an extremely good fit to the 

data. 
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Figure 7 shows the theoretical and experimental results of the dynamic 

damping measurements and here there does seem to be some discrepancy. 

The theoretical curve was calculated using the same values of ~oo and 

coOE/2E as for Fig. 10. 

6. CONCLUSIONS 

The observed anelastic behaviour of the Cu-Be flexure cannot be 

explained on the basis of a single relaxation process. A more complex 

mechanism for the anelastic behaviour based upon a hierarchical 

structure of dislocation locking mechanisms having a continuum of 

relaxation time leads to a much better fit to the data. Some experiments 

made using an aluminium alloy flexure and also an agate knife edge 

indicated similar w- 2 dependancy of damping upon frequency. This 

suggests that the mechanism responsible for damping in Cu-Be may not be 

unique to this alloy. Further experiments on Cu-Be are underway with a 

view to obtaining more accurate data so that the theoretical model can 

be more rigorously tested. Finally we note that a damping-frequency 

characteristic of the type observed leads directly to l/f noise at 

frequencies above l/~oo and it may will be possible to measure 

experimentally the intrinsic noise of the Cu-Be flexures. 
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Captions to figures 

The flexure pivot is machined to the form shown in 'a' while 

the Cu-Be alloy is in the solution heat-treated state. After 

precipitation hardening the flexure is ground to the dimensions 

and shape shown in tb' 
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pivot shown in Fig. 1. 
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The pendulum in place resting on the flexure pivot. 
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Fig. 8 

Fig. 9 

The anelastic after effect, AE, as a function of time of 

offset, T, and magnitude of offset, A, observed for the Cu-Be 

flexure strip. The data from point P is used in Fig. 10. 

(a) The simple Maxwell model of an anelastic solid having a 

single relaxation process 

(b) An anelastic solid having an infinite number of relaxation 

processes having a continuum of time constants up to a maximum 

of ~ and each having the same relaxation amplitude oE/~ • 
~ ~ 

Fig. 10 The anelastic after effect AE: 

+++ data points from an experimentally observed curve (P of 

Fig. 8) for the Cu-Be flexure strip 

theoretical curve for the solid of Fig. 9b calculated from 

equation (20b) with ~ = 2200 sand 
~ 

cOoE/2E = 10- 4 Nm rad- 1• 



"' " """"'-__ -!.4..::.0_m_m_ 

30 mm 

® 

@ 

---:--, --
I , -------i" "'-------
, 
I 

" : , ,,-----, , , 
I , 
~ 

" , 

: '" , " 1. ____ ~ 

-----.,~ 
--,,- ..J 1 ':"'" 

~ ----- 1 '" 
" , 

~,"""':: ',: ----., ", ." --- , ..,. ... , , , , , , , , , , 
---I.. , ----- ",: 

Fig.1 

...., 





Fig.3 



0.90mm 

Fig.4 



Fig.5 



Fig.6 



t 
11 

0.1 

Cu-Be 

\ 

\ 

\ 
o before electropolish \ 

o after 5pm surface layer removed \ 

\ 

\ 
O.01~----~--~~~~~~~----~--~~~~~~~ 

10-3 10-2 10-1 

(t)/rad.s-1-_~ .. -

Fig.7 



15 

t 
AE/div. 

10 

5 

• 1 dlv. = 2.2·10 N m 
...-11.--------/...- --

// P 

I . -8 

• 
/ 

/ 
A// 

/ 
/ 

/ 
A/. ---7 A//'--- 0 

A ~/ 
/ / 

~/ 
/0 

AE=A( 1 - e-T/ To) e-tlTo 

•• 9 -3 
= 2.9·10 rad 

o 9 -3 
= 1.5 ·10 rad 

Offset,vLr 
- - -1- --~;;;I_------

time constant To 

-4 -1 9 A=1.1·10 Nmrad . 
orL-----~ __ ~ ____ ~ ____ ~ ____ ~ ____ ~ ____ ~ ____ ~ ____ ~ ____ ~ ____ ~ ____ ~ ____ L_ __ ~~ __ ~~ 

o 20 40 60 80 100 120 140 

T/min .. 

Fig. 8 



® 

E 

r-----4~__+__--......_ - - - - - - -- @ 

().E 

E 

11 _t ()E 
Cl:) 00 

------1~-+----............ - - - - - ---

Fig.9 



AE/div. I 1 div. = 2.2 .10-8 Nm 

10 

5 

0 1 O------~~----~~----~~lo_----~~~~~~~~:!;;~~==~~~~-4~~ • • . . I. . .' ,. 
20 80 40 60 100 120 140 160 

time Iminutes 

Fig. 10 


