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Abstract 

It is shown how a general power series, when raised to an 
arbitrary real power, can again be written in the form of 
a power series with new coefficients, the form of which 
is readily given by explicit expressions. By extending 
previous work and replacing insufficient mathematical 
tabulations, the new formulae make possible the effective 
handling of power series, even to a high order., 

1. Introduction 

Simple operations with (convergent) power series S of the type 

S 
<Xl 

1 + I 
j=1 

with x 2 -( 1 , (1) 

such as S2, S-3, S1/2 or S-1/4, continue to be of much practical interest 
to anybody involved in the application of mathematics. 

Since the information on this subject readily available for physicists, 
as for instance that given in [1], is clearly insufficient, a more 
general (yet still simple) description of the effects produced on power 
series by some elementary operations seems to be still very desirable. 

In a previous note [2] we have trealetr."'fhe t~o special cases S-1 and 
S1/2, for which formulae were given for the coefficients of the 
resulting new power developments (as well as explicit expressions 
up to order 8). 

In the present report we intend to derive some more general formulae 
which are applicable to any power Sa, with a real. The two examples 
described before will turn out to be special cases and can serve as 
useful checks. No claim is made for the novelty of the results presented; 
the only purpose is to give practical help in lengthy calculations. 

* This report is dedicated to Pierre Carre on the occasion of his 
retirement from BIPM. 
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2. General approach 

The new approach is based on a su&gestion which P. Carre, of BIPM, 
made to the author as a comment on [2J, probably in spring 1984. In the 
meantime, the need to have available explicit expressions for powers of S 
has turned up again in our work in various contexts (as for instance in 
[3J), motivating us thereby to have a new look at the general problem. 

Carrets idea is to write S in the form 

S 1 + T , (2) 

with T 

At first, this may seem too simple an approach to be of much use, but 
this impression is wrong. If we consider an arbitrary power a of S (with 
a real), then we have, by virtue of the generalized binomial theorem, 

1 + ! 
n=l 

The first sum is finite if a is a natural number. 

Our aim will now be to arrive at a general expression for the new 
coefficients bk • 

Let us assume for Tn the development 

I 
k=n 

(3 ) 

(4) 

If the new coefficients nCk are known - their evaluation is the subject 
of the following section - then we obtain from (3) and (4) 

1 + ! I 
0) 

1 + I 
n=l k=n ., ~""'k=l 

since nCk 0 for n > k. Therefore, we arrive at a general relation 
for the coefficients bk appearing in the series expansion (3) of Sa, 
namely at 

(5 ) 

This simple formula is the main result of the present study. It allows us 
to split up the general problem of determining Sa into two separate 
parts, namely the practical evaluation of the generalized binomial 
coefficients (~) and the determination of the powers Tn , where n is 
a positive integer. It will be seen from what follows that these two 
partial problems are easily solved. That their results can be so readily 
combined to yield the coefficients bk for the series development of Sa, 
as expressed by (5), is only made possible by Carrets decomposition (2) 
which is thus recognized as the long sought-for missing link. 
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3. Evaluation of Tn 

Let us begin with the second problem, i.e. the transition from 

T I to 
co 

I 
j=l k=n 

It is known from the theory of multinomial expansions how the new 
coefficients nCk can be determined in terms of aj' namely by applying the 
prescription 

k 

I n! IT 

(n) j=l 

where the sum (n) has to be extended 
n l n2 nk 

al a2 ak ' with integer powers 

conditions 

n 

Thus, for instance, for n 

compatible with (6b) are 

and 

3 and k 

n· 
a .J 

J (6a) 
IT n .! 
j J 

over all arrangements 

o '" nj '" 
n, which fulf i1 the two 

k. (6b) 

f 
n. 

6, the only arrangements IT a.J 
j J 

and 

It is practical to have the coefficients nCk readily available since, 
as a result of (5), they turn up in all our problems. This is why their 
explicit form has been determined and they are assembled in Table 1 
(up to k = 10). 

In view of the central role they play, it is important to dispose of 
checks allowing us to attest the reliability of the listed coefficients 
nCk. This can be easily accomplishea Iri'the following way. First, every 
term must obviously fulfil the two conditions imposed by (6b). As for the 
number of terms Pn(k) from which nCk is composed, we note that it 
corresponds to the number of partitions of k into n parts. In addition, 
we may point out that 

k 

p(k) I Pn(k) (7) 

n=l 

is the number of unrestricted partitions of k, i.e. the number of 
decompositions of k into integers (without regard to order). All these 
quantities are listed (up to k = 12) in Table 2. Finally, as for the 
numerical coefficients appearing in a given e~rression for nCk' we note 
that their sum can be shown to be equal to (~-l)' which is the number of 
ways that k objects can be placed in n boxes, when none of them is left 
empty. This result has already been indicated in [4J. 
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Table 1 - Explicit form of the coefficients nCk which appear in (4), 
for n ~ k ~ 10, in terms of aj 

n k 

1 k 

2 2 

3 

4 

5 

6 

7 

s 

9 

10 

3 3 

4 

5 

6 

7 

s 

9 

10 

2a1a2 

2a1a3 + a~ 

2a1a4 + 2a2a3 

2a1aS + 2a2a4 + aj 

2a1a6 + 2a2aS + 2a3a4 

2 2a1a7 + 2a2a6 + 2a3aS + a 4 

2a1aS + 2a2a7 + 2a3a6 + 2a4aS 

2a1a9 + 2a2aS + 2a3a7 + 2a4a6 + a~ 

a 3 
1 

2 
3a1a2 

2 2 3a1a3 + 3a1a 2 

+ 6a1a2a3 + a~ 

+ 6a1a2a4 + 3a1aj + 3a~a3 
.,; "!,,. ...... 

3aIa 6 + 6a1a2aS + 6a1a3a4 + 3a~a4 + 

2 2 3a1a7 + 6a1a2a6 + 6a1a3aS + 3a1a4 + 

3a2aj 

2 
3a1aS + 6a1a2a7 

+ 3a2al + 

+ 6a1a3a6 + 6a1a4aS + 

2 

3a~aS + 6a2a3a4 + aj 

2 
3a2a6 + 6a2a3aS 

3a3a4 



n 

4 

S 

6 

7 

k 

4 

S 

6 

7 

8 

9 

10 

S 

6 

7 

9 

10 

6 

7 

8 

S 

Table 1 (cont'd) 

323 
4a1a4 + 12a1a2a3 + 4a1a2 

3 2 2 2 2 4 
4a1aS + 12a1a2a4 + 6a1a3 + 12a1a2a3 + a2 

322 
4a1a6 + 12a1a2aS + 12a1a3a4 + 

3 2 
4a1a7 + 12a1a2a6 + 

+ 24a1a2a3a4 

a 6 
1 

6aIa2 

6ata3 + 

20ara 2a 4 + 10ara~ + 30aia~a3 + Sa1a~ 
3 3 2 2 2 2 20a1a 2a S + 20a1a 3a 4 + 30a1a2a 4 + 30a1a 2a 3 

lSa4a 2 
1 2 

9 6aIa4 + 30afa2a3 + 20arai 

10 6aIas + 30aia2a4 + lsaia~ + 60ara~a3 + lsaia~ 

7 

8 

9 

a{ 
6 7a 1a 2 
6 7a1a3 + 
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Table 1 (cont'd) 

n k nCk 

8 8 a 8 
1 

9 7 8a1a 2 

10 7 + 28a 6a 2 
8a1a3 1 2 

9 9 a 9 
1 

10 8 9a 1a 2 

10 10 ala 
1 

4. General formulae for nCk 
I 

A closer look at Table 1 reveals a number of similarities between 
coefficients nCk for which the difference k-n is the same. This suggests 
an arrangement in terms of nCn+r' with r = 0, 1, 2, ...• If this is 
done, it is easy to see that the observed regularities can be described 
by the following relations 

nCn an 
1 , 

nCn+1 n an- 1 
1 a2 , 

nCn+2 
n an- 1 a3 + (2) 

n-2 a 2 
1 a1 ., 2 ;!; "rt .-.... \ 

n an- 1 n-2 n-3 a3 
(8 ) 

nCn+3 a4 + 2(2) a2a3 + (3) 1 a1 al 2 

n an- 1 + (2) af-2 2 
nCn+4 1 as ( 2a2a4 + a3) 

+ 3(3) n-3 2 + (4) n-4 a 4 
a1 a2a3 a1 2 , 

etc. 

For a further compactification of these expressions, see the Appendix. 
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Table 2 - The number Pn(k) of partitions of k into n parts and of 
unrestricted partitions p(k), for 1 ~ k ~ 12. 
An inspection of this table leads to the conjecture 
that Pn(k) = p(k-n) for n ~ k/2, assuming p(O) = 1. 

Pn(k) 
k p(k) 

n = 1 2 3 4 5 6 7 8 9 10 11 12 

1 1 1 

2 1 1 2 

3 1 1 1 3 

4 1 2 1 1 5 

5 1 2 2 1 1 7 

6 1 3 3 2 1 1 11 

7 1 3 4 3 2 1 1 15 

8 1 4 5 5 3 2 1 1 22 

9 1 4 7 6 5 3 2 1 1 30 

10 1 5 8 9 7 5 3 2 1 1 42 

11 1 5 10 11 10 7 5 3 2 1 1 56 

12 1 6 12 15 13 11 7 5 3 2 1 1 77 

5. Integer powers of S 

A simple but particularly important special case of Sa is given 
when the exponent a is a natural number m = 1, 2, 3, •... We then have 
from (5) 

(9) 

with nCk as given in Table 1. Since the numerical values of the binomial 
coefficients are readily available, we just use their traditional 
notation. The explicit form of bk , in terms of a j , can therefore be 
obtained as 

/'" 



8 

b1 (i) a 1 

b2 (i) a2 + (2) a 2 
1 

b3 (i) a3 + 2(2) a1 a2 + (3) a3 
1 

b4 (i) a4 + (2) (2a1 a3 + a~) + 3(3) 2 + (%) a 4 
a1 a 2 1 

3(3) (aI a3 + a1a~) 
(10) 

bS (i) as + 2(2) (a1 a4 + a2a3) + 

+ 4(%) 3 a1a2 + (5) af ' 

b6 (i) a6 + (2) (2a1as + 2a2a4 + a~) + (3) (3aIa 4 + 6a1a2a3 + ai) 
+ (%) 3 (4a1 a3 + 6aIa~) + S(5) 4 

a1a 2 + (6) 6 
a1 ' 

etc. 

Since (k) o for k > m, some of the terms listed above actually vanish. 

Whereas, for m = 1, 2, 3, ... , there is the well-known relation f 

m (m-I) (m-2) ... (m-n+1) m! 
(11) 

n! (m-n)! n! 
') 

we now have to see what happens to the analogous binomial coefficient 
(-~) where both m and n are natural numbers, remembering that factorials 
of negative arguments diverge. However, we can still write 

(-m)(-m-1)(-m-2) ••• (-m-n+1) 
= 

n! 

(_l)n (m+n-1)! 
---

n! (m-I)! ., 
~,. ,-.. , 

(12) 

The two expressions (11) and (12) look quite different. Is there a way 
to combine them into a common formula? This can indeed be achieved by 
introducing a "cut-off operator" of the form 

= I : : 
for x ) 0 , 

(x)+ (13) 
x ~ 0 . 

It is not difficult to verify that with this notation the expression 

(±l)n [m + (+n ±l)+J ! 
(±m) (14) n n! [m - n + (+n ±l)+J! 

is indeed a valid generalization of (11) and (12). Yet, it must be 
admitted that this general formula looks rather artificial and we 
therefore would not expect it to be of frequent practical use - although 
it could be very easily programmed on a computer. 

I 
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If the binomial coefficients (~) in (10) are replaced by (-~), then all 
the explicit relations (10) are still valid, provided they are 
interpreted according to (12) or (14). 

Important special cases concern m = 1, 2 or 3, for which we readily 
obtain from (12) 

Cl) 
(-l)n n! 

(_l)n , = n n! O! 

C 2 ) 
(_l)n (n+1)! 

(-I)n (n+l) --- , n n! l! 

C 3 ) 
(-I)n (n+2) ! 

(-I)n 
(n+l) (n+2) 

n n! 2! 2 

(15) 

We note that the first of these relations has already found 
(unconsciously) an application in [2], namely for the evaluation of 8-1 , 
although at that time this was not seen in the present light. 

6. Reciprocal integers as exponents 

Let us consider another special case, namely when the exponent is of 
the form a = ± l/m, with m a natural number ) 2. We look, in particular, 
for an explicit expression of (~) which appears in (5) and is thus needed 
for the evaluation of the new coefficients bk • According to its 
definition, the binomial coefficient, for a = + l/m, is given by 

( ~ )( 1 -m )( 1-2m ) ••• (I-m (n -1 )) 

m m m m 
n! 

(_I)n-l l(m-l)(2m-l) (nm-m-l) 

mn n! 

(_I)n-l 
(nm-m-l) !in! , 

mn n! 
.,~ Pr,'" , ..... , 

where (x)!m! = x(x-m)(x-2m) Xl, 

is the m-fold factorial of x > O. 

Likewise, we have for a = - l/m 

(--=-) (m+l) (2m+l) 
-m -m -m 

n! 

(-I)n ~ 
-- (nm-m+l) !m! 
mn n! 

with 

(nm-m+l) 

-m 

o < Xl ~ m, 

Therefore, the binomial coefficient for a ± l/m can be written as 

(nm-m+!) !m! 
+ (_I)n '" 

(nm) !m! 

with the definition (-l)!m! = 1, for m ) 2. 

(16a) 

(16b) 

(17) 
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A simple illustration may be in order. 

For a = 1/2 application of (16a) or (17) yields 

1 (2n-3)!! 
(_l)n-

(2n)! ! 

which explains the somewhat mysterious expression that we have found in 
[2J for the coefficients bk in the case of a square root of S. 
Apparently, it was the observation that (1~2) appears in [2J for bk which 
has led P. Carre to his decomposition (2). 

Other simple explicit results are, for example, 

C 1/ 2 ) (_l)n 
(2n-1)! ! 

. n (2n)! ! 

(1/3) (_1)n-1 (3n-4)!3! 

n (3n) ! 3! 

C 1 /3) (-l)n . 
(3n-2)!3! 

n 
(3n)!3! 

(1~4) (_1)n-1 (4n-5)!4! 

(4n)!4! 

C1~4) (_l)n 
(4n-3)!4! 

(4n)!4! 

(1~5) (_1)n-1 (5n-6)!5! 

(5n)!5! 

C1~5) n (5n-4)J5! ( -1 ) ~,,', , ::. 

(5n)! 5! 

For the numerical evaluation it is practical to make use of the 
corresponding recursion formulae which are 

(±l{m) 

(±l/m) 
n 

+1-- m and 

_ 
[

(n-1)m +lJ +1/ 
( _ m) 

n-1 ' nm 

Some numerical values are listed in Table 3. 

for n ;:. 2 • 

(18) 

(19 ) 

By virtue of (5) all these expressions, together with the coefficient 
nCk from Table 1, now yield immediately the coefficients bk appearing 
in the corresponding series. 
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Table 3 - Numerical values for some binomial coefficients of the form (± l/m) n 

n (1/2) e1/2 ) (1/3) e1/3 ) (1/4) e1/4
) (1/5) e1/5

) n n n . n n n n n 

1 1 -1 1 -1 1 -1 1 -1 
"2 "2 "3 "3 4" 4" "5 "5 

2 -1 3 -1 2 -3 5 -2 3 
8 8 "9 "9 32 32 25 25 

3 1 -5 5 -14 7 -15 6 -11 
16 16 81 SI 128 128 125 125 

-5 35 -la 35 -77 195 -21 44 t-' 
4 2 048 

t-' 
128 128 24J\ 243 2 048 625 625 

? 

5 7 -63 22 -91 231 -663 399 -924 
256 256 729~: 729 8192 8 192 15 625 15 625 

6 -21 231 -154 728 -1 463 4 641 -1 596 4 004 
1 024 1 024 6 561 6 561 65 536 65 536 78 125 78 125 

7 33 -429 374 -1 976 4 807 -16 575 6 612 -17 732 
2 048 2 048 19 683 19 683 262 144 262 144 390 625 390 625 

8 -429 6 435 -935 5 434 -129 789 480 675 -28 101 79 794 
32 768 32 768 59 049 59 049 8 388 608. 8 388 608 1 953 125 1 953 125 
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As a simple application of the procedure, let us determine the explicit 
form of the coefficients ~ for a = - 1/2, hence of 

k 
bk I (-1~2) nCk 

n=1 

They are readily found to be (for k ~ 8) 

13 2 - - a2 + - al 
2 8 

15 35 
a 2a + _ a 4 

16 1 2 128 1 

1 3 15 
a5 + - (ala 4 + a2a 3) - -. 

2 4 16 

35 3 63 5 
+ - ala2 a 

32 256 1 

13 2 
2 a6 + 8 (2a l a 5 + 2a2a4 + a3 ) 

5 
16 (3aIa 4 + 6ala2a3 + a~) 

35 3 2 2 315 4 231 6 
+ - (2al a 3 + 3ala2) - - a 1a2 + -_. al 

64 .' -256 ' , 1 024 

1 3 
a7 +-

2 4 

15 

16 

35 +_. 
32 

(20) 
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1 3 
- - a8 + -- ( 2a l a 7 + 2a2a6 + 2a3a5 + at) 

2 8 

15 2 2 2 
- -- (ala 6 + 2ala2a5 + 2ala3a4 + a2a 4 + a2a 3) 

16 

35 3 2 2 2 2 4 
+ --- (4a l a 5 + 12ala2a4 + 6ala3 + 12ala2a3 + a2) 

128 
315 

(a1a 4 + 4afa2a3 + 2aia~) 
256 

693 3 003 6 6 435 
+ 1 024 (2a~a3 + 5a1a~) - 2 048 ala 2 + 32 768 a~ 

7. Other exponents 

Exponents a which are larger than unity and not integers give rise 
to generalized binomial coefficients which are somewhat more cumbersome 
to handle. We can easily see the problem by treating a special case, 
for instance a = 5/2. Here we have 

5 
For n ~ 4 we have, since - -n+l 

2 

n! 

-(2n-7) 

2 

n-3 5!! 
(-1) (2n-7)!! 

2n , n. 

but this formula clearly does not hold for n ~ 3. 

If we apply the notation introduced in (13), then an expression, valid 
for any value of n ~ 1, can be given in the form 

(21) 

but this again is rather complicated. 

It is readily seen that negative values of a are much easier to treat. 
Thus, for instance for a = -5/2 we find 

C~) C7
) C9

) 
(3+2n) 

C 5/ 2 ) 
2 2 2 -2 

n n! 
(22) 

(-I)n 
(2n+3)! ! 

for any n ~ 1 . 
3(2n)! ! 
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It would certainly be possible to indicate a general expression valid for 
any value of a, but in the absence of a real need we prefer to leave the 
pleasure of deriving such a formula to the reader. 

It will be obvious that for all practical applications the complications 
mentioned above can be easily avoided by two successive applications of 
some of the simpler formulae given before since we still have, of course, 
identi ties like 

s±m/n 

where m and n are positive integers. 

Once more Madame M. Boutillon is to be thanked for her careful and 
critical reading of an early draft; the present version has taken into 
account most of her suggestions. 

The dedication of this report to P. Carre would be easily justified 
by his very substantial contribution, but in reality it has a deeper 
meaning. For more than a quarter of a century he has been a prominent 
figure at BIPM. His great intellectual powers were not always easy 
to accept for everybody. Perhaps he reached his best achievements, in 
criticizing and improving the work of others. His strong demand' for 
clarity and truth, coupled with a pedagogical disposition, made him an 
implacable opponent of any form of mental indolence. As such a turn of 
mind has become rare these days, Carre will soon be missed at BIPM. 

Appendix 

After finishin? the present report, we happened to come across a general 
expression in LS] which not only seems to be in line with the set of 
equations given in (8), but also allows us to develop them for higher 
values of r and at the same time to get some, clearer insight into their 
combina~orial structure. This relaiion';'when,written in our present 
notation, has the simple form (for r ~ 1) 

= 

where Yr are the so-called Bell polynomials Yr (f 1,gl' f 2 ,g2' •.. , 
fr,gr)' with 

and 

and where the "falling factorials" are defined by 

nl 

(n-j) I 
n (n-1) (n-2) (n-j+1) , for n ~ j. 

(A1) 

(A2) 

(A3) 

The Bell polynomials are listed for 1 ~ r ~ 8 in [S] and, with another 
notation, up to r = 10 in [6]. The case r = 0 could be included by 
putting Yo = foe 
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As the result (AI) is only given incidentally in the context of a problem 
and without proof, a verification may be welcome. Let us choose r = 4. 
Since, according to [5J or [6J, 

(A4) 

substitution of (A2) leads to 

Y4/4! 

1 [n-l n-2 2 24 24nal a5 + n(n-l)al ( 24a 2a 4 + 12a3) 

+ n(n-l)(n-2)al -3 (12a~a3) + n(n-l) (n-2) (n-3)al -4 aiJ 

in agreement with the corresponding relation in (8). While the 
compactness of (AI) is quite impressive, it will clearly be more 
practical to use the explicit form given in Table 1 whenever the 
coefficients nCk required for numerical calculations are listed there. 

The existence of the general formula (AI) is in line with our feeling that 
probably none of the relations given here is actually new, but we still 
think that some of the explicit expressions stated in this report may be 
of some use in practical calculations. 
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