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Abstract 

We evaluate the asymptotic form of the normalizing transform applicable 
to counting data resulting from a Poisson process which has been 
distorted by a dead time of the generalized type. For the two limiting 
cases, which correspond to the traditional types, the recently derived 
expressions are recovered and recognized as exact. 

1. Introduction 

The transformation of random variables is a subject dealt with i~ 
detail in most textbooks on mathematical statistics, as it provides a 
basic and useful tool for the handling of many practical situations. The 
closely related field of so-called normalizing transformations, on the 
other hand, seems to be clearly less favoured by the writers of 
introductory texts, although, of course, the specialized literature is 
far from being scarce. Apart from their obvious practical usefulness, 
these transforms may also give rise to some interesting problems that 
occur in their search. 

A normalizing transform is constructed for the purpose of transforming a 
given, usually asymetric distribution of a random quantity into another 
one in such a way that the distribution for the new variable approximates 
as closely as possible to a normal (or Gauss~an) distribution. Thus, for 
a given X we try to find a function"gtX:') so that 

Y g(X) normal (1) 

for instance asymptotically for X » 1. 

The practical advantage then obviously is that the well-known testing 
"machinery" developed for the normal distribution can be used for Y, at 
least in an approximate way, since it turns out that exact normalizing 
transformations only exist for some simple special cases. 

In a recent article M.C. Teich [1] has described in a clear and detailed 
way how one can obtain normalizing transformations for a dead-time
distorted Poisson process, and much of what follows is taken from or 
inspired by his paper. 
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Let us consider a random variable X, with expectation value ~ and 
variance 0 2 • If 0 can be expressed as a function of ~, such that 0 = f(~) 
is known explicitly, then it is possible to derive an approximate 
normalizing transformation by evaluating the integral 

y g(X) 

where c is a constant. 

~ d~ I 
c f-

f(~) ~=X o 
(2) = (T 2)* 

In the following section we first summarize the results obtained by Teich 
in [1], as they will be of interest in the discussion of the more general 
result that we shall derive in section 3. 

2. Transforms for the traditional types of dead time 

a) For the case of a Poisson process modified by a non-extended dead time 
(n), the first few moments of the counting distribution are well known 

(see [1] for references). By neglecting the contributions which depend 
only on the initial conditions (choice of time origin), we have the 
relations (with x = p~) 

pt 
~n and 

1 + x 
pt 

(3 ) 

0 2 
n (1 + x)3 

From this one can obtain for the required function f the linear relation 

~ (1 - ~n ~/t) (4) = (T 5) 

Substitution into (2) leads (in the notation of [1]) to 

y 

2ca arctgh /X/a • (5) = (T 6,7) 

where w = ~ and a = l-rr:t. 

If (5) is taken at its face value and developed into a power series, we 
arrive at 

1 
2c IX I ( TJX) k , 

k=o 2k+1 
(6 ) 

where TJ ~/t. 

* The label T refers to the corresponding reference in [lJ. 
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b) For an extended dead time (e), the first two moments of the counting 
distribution are (again with x = p,;) 

l1e pt e-x and 
(7) 

0'2 
eX - 2x 

( ) pt e 
e 2x 

In this case, the linear relation given in [1J is 

= (8) (T 12) 

Substitution into (2) then leads to (in the notation of [1J) 

y 

2cb arcs in rx/b 

where u = ~ and b = It/2,;. 

By performing again a series development we arrive at 

<X> 

2c IX 2: (2k-1) !! (TJX) k • 
k=o (2k+1) k! 

3. The transform for a generalized dead time 

(9) (T 13, 14) 

f 

(10) 

As it has already been noted at the end of [1J, it might be of 
interest to examine the normalizing transformation applicable to a 
generalized dead time. This is known to be characterized by a parameter 
o ~ 8 ~ 1, with the limiting cases corresponding to the traditional 
types. 

As the necessary basic formulae for the momeu,ts have been available to us 
for quit"e some time (the relevant e;q,'f~ssion~ for the variance, dated 
March 84 in my files, are still unpublished), it seemed worth while 
to try to make use of them for the present calculations. 

The asymptotic first and second moments for the counting distribution of 
a Poisson process which has been distorted by a generalized dead time 
(,;, 8) can be shown to be given by the expressions 

= 

8pt 
and 

e 8x +8-1 

[e 8x (e 8x - 28x) + 82 - 1J 8pt 

(e 8x +8_1)3 

(11) 

It is easy to verify that for 8 = 1 this leads to (7), whereas for 8 0, 
after an elementary development, one finds indeed (3). 
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In order to express a in terms of ~, as required by (2), we have to go 
into some lengthy series developments. The starting point is (11), 
written in the form 

A 

Let us perform the power-series development up to order x 5, for example. 
This then first leads to 

and 

1 1 11 
B = 1 + - ex 3 + - e2x 4 + _ e3x 5 

3 3 60 

In view of the form of (2), we aim at a series/developments which is easy 
to integrate. For this purpose we evaluate B-1 2. Since the currently 
available formulae for doing this directly do not go to the required 
order, the' rearrangement will be performed in two steps by means of the 
expressions given in [2]. This first leads to 

Bl/2 
1 1 

e2x 4 11 
- 1 + _ ex 3 +- +--

6 6 120 

and then to 

Hence, 

a 

B-l/2 - 1 - ~ ex 3 - .: e2x 4 - ~ 
6 6 

we arrive at the intermediate 

113 
1 + x + - ex 2 - - e(1-e)x 

2 6 

120 

result 

e3x 5 , 

e3x 5 . 

1 1 
e(4 + 4e - e2)x4 - - e2 (30 + 11e - e2)x5• 

24 120 

(12) 

We now have to express x in terms of ~. In order to do this, we start 
from the expectation value given in (11) and write it in the form 

t x 
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or also, with the abbreviation n = -r;/t, as 

x 1 
x 2 1 

92) x 3 iJ. - - [1 - x + (1 - - 9) (1 - 9+-
n 2 6 

3 7 1 
(13) 

+ (1 - - 9 + _ 92 - _ 93) x4] . 
2 12 24 

For the reversion of this series we try the ansatz 

(14 ) 

The unknown coefficients can be determined successively - the procedure 
is very similar to the one we recently applied in [3] - and they are 
found to be 

1 
a2 = 1 + - 9, 

2 

7 1 
a 4 = 1 + 3 9 + - 92 + - 93 • 

6 24 

3 1 
1 + - 9 + - 92 , 

2 6 

A closer look at these coefficients suggests the general form 

k~l S(k, k-j) 
L 9 j 

j=O (j+1) ! 
for k ~ 1 , 

where S(k, k-j) are Stirling numbers of the second kind. 

(is) 

Hence, for x and its required powers this results in (by putting niJ. z), 
always up to fifth order, 

z[l + 
1 3 1 

92)z3 x - z + (1 +- 9)z2 + (1 +- 9+-
2 2 6 

7 1 
+ (1+39+- 92 + _ 93)z4] , 

6 24 

x 2 - z2 [1 + 2z + (3 + 9)z2 '+ Y4 + 4 e',;+ .: 92)z 3] 
. 3 

x 3 z3 [1 
3 

- + 3z + (6 + - 9)z2] 
2 

x4 - z4 [1 + 4z] , 

x 5 - z5 

Substitution of these approximations into (12) leads to a lengthy 
expression which, however, can be rearranged into the form 

(16) 
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ITi 1 4 1 
82)z3 - 1 + z + (1 + - 8) z 2 + (1 +- 8+-

(J 2 3 6 
7 

82 1 
+ (1 +- 8 + + _ 83)z4 (17) 

3 24 
10 8 1 

84)z 5 • + (1 + - 8 + 382 +_ 83 +--
3 15 120 

1 1 
Since - = --- is the form we need for the integration required in (2), 

(J f (f-L) 
the evaluation of the normalizing transform looked for is now easy 
to perform. We thus find (with n = ~/t) 

g(X) 
1 

2c IX [1 + -
3 

1 1 
nX +- (1 +- 8)(nX)2 

1 
+ - (1 

7 

5 2 
4 1 

+ - 8 + - 82)(nX)3 
3 6 

1 7 
82 1 

+- (1 +- 8+ + - 83)(nX)4 
9 3 24 

1 10 8 1 
+- (1 + - 8 + 382 + _ 83 +--

11 3 15 120 

(18) 

84)(nX) 5 J • 

This is clearly the main result of the present study. It is interesting 
to note that the type parameter 8 does not come into play before second 
order, as it might have been expected. 

4. Discussion 

The limiting cases of (18) are of special interest as they correspond 
to the types usually considered. They give rise to the following 
expressions 

for 8 = 0, i.e. a non-extended dead time: 

1 1 1 1 1 
_ :lc IX [1 + - nX + - (nX) 2 +"'_'I'(rjX) 3 +, - (nX) 4 + - (nX) 5J, 

3 5 7 9 11 
(19) 

- for 8 = 1, i.e. an extended dead time: 

1 3 5 35 63 
- 2c IX [1 + - nX + - (nX) 2 + - (nX) 3 + - (nX) 4 + - (nX) 5 J. (20) 

3 10 14 72 88 

A comparison of these results with the relations (6) and (10), which 
are based on the formulae given in [lJ, show that they are in complete 
agreement for all the orders considered. This is quite surprising 
since the formulae (4) and (8), on which the determination of the 
normalizing transformations is based in [lJ, were supposed to be linear 
approximations only. Our observation therefore strongly suggests them 
to be rigorously valid, and this can be verified in the following way. 



a) for equation (4): 
From (3) we have the relation 

thus 

b) for equation (8): 
From (7) it follows that 

thus 

1 x 
= - (e - 2x) f.1e 

eX 
= 

7 

pt -r;/t 2 
iJ.n (l - ) 

l+x 

(21) 

(22) 

The results (21) and (22) prove that the equations (4) and (8) are not 
just linea~ approximations, but indeed exact. This also explains why 
Teich's solutions (5) and (9), or the equivalent series expansions (6) 
and (10), are rigorous. 

Obviously, the new generalized transform (18) is only an approximate 
solution to the problem, but for the time being this seems to be more 
than adequate for the possible practical applications. 

I wish to thank Prof. M.C. Teich, Columbia University of New York, for 
kindly suggesting to me to have a look at the problem treated in this 
study. 
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