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Abstract 

It is shown that a series arrangement of two dead times (~1 and ~2)' 
where each of them is either of the extended (E) or of the non-extended 
(N) type, can always be replaced by a generalized dead time (involving 
~2and a type parameter 9) which yields the same output rate. For the 
sequences E-N and N-E explicit formulae are given for the evaluation of 
the parameter 9 of the equivalent dead time. 

1. Introduction 

The arrangement of two dead times in series is of great practical f 
importance, in particular for accurate activity measurements. Yet, it has 
received rather little attention, as is evidenced by the scarce 
literature dealing with this topic. This situation may be due to the fact 
that many experimentalists are of the opinion that the corresponding 
corrections can normally be neglected and are therefore not worth the 
trouble. While this attitude may be justified for low count rates, 
it becomes doubtful at higher ones. 

The present knowledge concerning series arrangements of dead times is 
very limited. All we actually dispose of are some formulae for the output 
rates when the pulse sequence at the input forms a Poisson process [1]. 
The effect of the first (smaller) dead time can then be expressed 
convenieptly by a transmission fact,or~''I!l' an','approach which allows us 
to determine the original count rate in a simple way [2]. On the other 
hand, virtually nothing is known about the interval distribution and the 
counting statistics of the output process. 

The recent availability of generalized dead times has given a new 
stimulus to the whole field of counting statistics, and the series 
arrangements are no exception. In particular, it is easy to see [3J that 
it should be possible to replace any series of two dead times (which are 
of the traditional types) by a single generalized dead time if we choose 
for its length the value of the second element. Since it then 
corresponds, as far as count rates are concerned, exactly to the series 
arrangement of two, we shall call it an equivalent dead time. The only 
problem that remains to be solved consists in determining the 
corresponding value of the parameter 9. 
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The advantage resulting from the replacement of a series arrangement 
by a (real or fictive) single dead time will be obvious: instead of 
having to deal with the often rather complicated expressions valid for 
two dead times in series, the known inversion formula for a generalized 
dead time or a simple iterative numerical method [4] then readily yields 
the desired original count rate p, provided that 9 is known. As the 
determination of p is achieved by calculation, it will be obvious that 
no device capable of producing a generalized dead time has to be 
available for taking advantage of the present approach. 

2. Method used 

The approach chosen, for a given set of parameters (count rate p and 
dead times ~l' ~2 of specified type), to determine the generalized "type 
parameter" 9 is straightforward. \-Je use the formula corresponding to 
the series arrangement chosen (Fig. 1) which yields, for a given input p, 
the count rate R at the output. On the other hand, the output RI of 
a generalized dead time (with parameters 't'z and 9) is given by the Tak.{cs 
formula (see for instance [5]). Therefore, equating R with RI will result 
in an expression for 9, the only free parameter. 

a) 

p • ~1 ~2 • R 

N or E N or E 

b) 

p • ~2 ' 9 • RI 

Fig. 1. Schematic arrangement of dead times and the corresponding count 
rates. 

a) Two dead times in series (any combin~tion of types), 
.with ~l ~ ~2· ., ~,-. 

b) A single generalized dead time. If 9 is chosen such that RI = R, 
this dead time is said equivalent to the corresponding series 
arrangement of a). 

A possible practical way of finding this "equivalent" value of e would be 
to apply numerical methods. However, in order to obtain functional 
relations - although these will in general only be approximate ones -
we prefer in what follows to use series developments. 

It is well known from the equations (52) to (57) given in [1] that the 
expressions for R are simple only for the two "mixed" arrangements 
(namely N-E and E-N), but rather complicated for the "pure" cases N-N and 
E-E. In this first part we shall restrict ourselves to the two simple 
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cases, leaving the analogous developments for N-N and E-E to a subsequent 
study. The difficult problems concerning the convergence of our series 
developments as well as pertinent other mathematical subtleties will not 
be touched upon in what follows. 

For the generalized dead time we recall the relation [5 ] 

R' 
e p 

(1) 
ep'1:2 

+ e- 1 e 

which will be used in the form of a series development of x 
which a straightforward calculation gives 

P '1:2 ' for 

p 

R' 

3. The case E-N 

()) x j 
1 + x + I ej - l . , 

j=2 J. 
(2) 

For the situation where the first dead time '1:1 is of the extended type 
and the second of the non-extended type, we have for the output count 
rate R the relation [1] 

R 
p 

(I-a) x + ea x 

where a = '1:1/ '1:2 ~ 1 and x = p '1:2 • 

If written in the form of a power series, we find 

P 

R 
1 + x + I 

j=2 
. , 
J. 

Comparison with the expression (2) valid for a generalized dead time 
shows that the condition R = R I requir~s that' 

00 
(a x)j 00 

x j 

I I ~-1 
j ! . , 

j=2 j=2 J. 

or likewise, for J .. 0, that 

J a j+2 x j J ej+1 

I I x j 

j=O (j+2) ! j=O (j+2)! 

(3) 

(4 ) 

(5) 

He begin with the value J = 0 which leads immediately to the approximate, 
but very useful result 

e e.,' = o (6) 
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Better approximations of e, which will then also be a function of x, 
can be obtained step by step" for instance by means of the ansatz 

e = 
J 

eo (1 + L a j x j
) 

j=l 

thus in the form of a power series in x. 

For J = 1 equation (5) leads to 

= 
1 2 

e + - ex. 
3 

By putting now, according to (7), e1 = eo (l + a1x ), 
a development up to x 

1 
0:3 0:2 + 0:2 a 

1 
0:2 + - x - x+-

3 1 3 

from which one obtains readily 

For J 2 we find from (5) 

1 
= - 0:(1 - 0:) • 

3 

0:4 x 

we find by 

, 

1 1 
0:2 + - 0:2 x + - 0:4 x 2 

1 1 
e + - e2 x + _ e3 x 2 • 

3 12 3 12 

(7) 

(8) 

As the previous choice of a1 guarantees the equality of the terms on both 
sides up to x, we only have to consider those proportional to x 2 • 

and 

we have for condition a2 the 

1 4 
- 0: 
12 

1 1 
0:

2 a2 + - 0:4 2a + - 0:
6 

3 1 12 

With (8) this leads to 

1 1 
0:4 -

2 4 1 1 
a2 = 

0:2 ["12 0: - 0: (1- 0:) 
3 3 12 

1 
0:2 (1 -= 0:) (3 50:) . 

36 

0:6 ] 

(9) 
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These successive approximations can be readily pursued and we have in 
this way found for J = 3 and 4 the coefficients 

1 
a3 41a + 34a2) a3 (I-a) (9 -

540 
(10) 

1 
a4 (I-a) (18 - 174a + 351 a2 - 193 a3 ) a4 = 

6 480 
(11) 

When all these results are substituted into (7), we arrive at our final 
result for the parameter e of the equivalent dead time, namely 

a a 
e = a2 {I + - (I-a) x [1 + - (3 - 5 a) x 

3 12 

a2 

+ - (9 - 41 a + 34 a2 ) x 2 
180 

+--- (18 - 174a+ 351a2 - 193a3) x 3 + ... J} 
2 160 

valid for a series arrangement of the type E-N. 

4. The case N-E 

(12) 

For this arrangement of two dead times in series, the ouput count rate R 
is known [lJ to be given by 

p 
R = 

1 + a x 
e-(l-a)x (13) 

with the same notation as in (3). A series development in powers of x can 
be found in the following way. We first have 

and 

p 

R 

P 

R 

this may 

1 + 

1 + 

(1 + a x) e(1-a)x 
co 

[(1- a)x Jj 
(l+a x) I . , 

j,=O J. . ' ~t ,->I • 

co (1-a)j x j co (1- a)j ·+1 

I I 
x J 

+ a . , . , 
j=O J. j=O J. 

be brought into the form 

co (l-a)j x j co j(1- a)j x j 

I 
a 

I +--. , I-a . , 
j=l J. j=l J. 

co (1-a)j+1 x j +1 co 
(j+1) (1-a)j+1 x j + 1 

I 
a 

I +--
j=O (j+1) ! I-a j=O (j+1)! 



thus finally 

P 

R 

6 

co .+ 1 
x J 

1 + I (l-a)j (1 + ja) 
j=O (j+1)! 

(14) 

A comparison of this result with the output p/R' of a generalized dead 
time, which may be written in the form 

co 9j p 
I ·+1 1 + x J 

R' j=O (j+1)! 
(2') 

shows that the equality R R' requires that 

co 
(l-a)j 

co ~ 
I x j+1 I ·+1 (l+j a) = x J 

j=l (j+1) ! j=l (j+1)! 
(15) 

Hence, if (14) and (2') should be identical up to order xJ +2, we must 
demand that (for J ) 0) 

J (l-a)j+1 co 9j+1 

I [1 + (j+1) a] x j I x j 

j=O (j+2) ! j=O (j+2)! 
~16 ) 

For J 0, equation (16) leads readily to 

9 (17) 

Let us now look for better approximations to 9. This can be done in a way 
similar to that employed previously for the case E-N. This time it is 
convenient to use the ansatz 

9 
J 

bo + I b j x j 

.j=J:., 

For J = lone finds for 9 the condition 

2 
1-a2 + _ (I-a) 2 (1+2 a) x = 

3! 

2 
9 + - 92 x • 

3! 

(18 ) 

By putting for 9 the approximation 91 
linear terms. in x we find 

bo + b1 x and developping up to 

1 
1-a2 + - (1-a)2 (1+2 a) x 

3 

1 2 
- b + b1x + - b x 

o 3 0 

1 
1-a2 + b 1x + - (1-a2) 2 x 

3 
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hence 

1 1 
= - (1-0:)2 (1-20:) - - (1-0:2)2 = 

3 3 

1 
- - 0:2 (1-0:)2. 

3 

For J = 2 we likewise put 8 = 82 = bo + b1x + b2x 2• For the 

determination of b2 it is again sufficient to consider the terms 

proportional to x 2, for which we have 

and 

Hence, the coefficient b2 can be obtained from the condition 

1 
(1-0:)3 (1+30:) x 2 1 2 1 

83 x 2 = 82 +-82 x+-
12 3 12 2 

1 3 2 1 
b 3 thus ,- (1-0:) (1+30:) b2 + '3 bob1 +-

12 12 0 

from which we find, after some elementary rearrangements, that 

121 
= - (1-0:)3 (1+30:) + - 0:2 (1-0:2) (1-0:)2 - (1-0:2)3 

12 9 12 

1 
= - - 0:2 (1-0:)3 (1 - 50:) 

36 

(19) 

(20) 

In an analo~ous way the coefficients of the corrective terms proportional 
to x 3 and x have been determined as 

and (21) 

(22) 

Hence, for a series arrangement N-E of two dead times, the parameter 8 of 
the equivalent generalized dead time is given up to fourth order in x by 

8 = (1- 0:) 
0:2 (1-0:) 

{1+0: - - (1-0:) x [1 + -- (1 - 50:) x 
3 12 

(1-0:)2 

180 

(1-0:)3 

2 160 

(1 + 140: - 340:2) x 2 

(1 - 30: - 1230:2 + 1930:3) x 3 + ••• ]} • 

(23) 
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The formulae (12) and (23) are obviously the main result of this study. 
In both cases we do not know the general rule for the coefficients 
appearing in them. It is easy to verify that for the limiting cases a = 0 
and a = 1 the value of e resulting from (12) or (23) corresponds to the 
type of the second or the first dead time in the series arrangement, 
respectively, as one would expect. 

If the numerical value of the equivalent dead time is used for an 
evaluation of the original count rate p, on the basis of the measured 
output rate R and the dead time ~2' then a repetitive procedure will have 
to be adopted because the determination of the appropriate value of e 
supposes - at least in principle - that x (and hence p) is known in 
advance. In reality, however, this is no severe obstacle, for in the 
lowest approximation e is only a function of a, and in the higher ones 
the dependence on x is not critical (at least for x ~ 2). Hence, one or 
two numerical iterations should be sufficient. 
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