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Abstract 

We evaluate the explicit expression for the interval 
density of an original Poisson process which has been 
deformed by the insertion of a generalized dead time of 
the Albert-Nelson type. The known formulae corresponding 
to the two traditional types (extended or non-extended) 
are obtained as special cases. 

1. Introduction 

For any random process occurring in time, the interval density i~ 
clearly a quantity of basic importance. In the field of pulse counting, 
the time which separates two consecutive arrivals of events can nowadays 
also readily be measured experimentally, for instance by means of an 
electronic time-to-amplitude converter. It is therefore essential to have 
a set of reliable model distributions at hand with which the measurements 
can be compared and thus interpreted in terms of the parameters to be 
determi ned. 

For the case of a Poisson process, the interval density has the simple 
form of a decaying exponential function. If the original process has been 
distorted by a dead time which belongs to one of the two traditional 
types, the corresponding modified densities are also well known and of 
a rather simple form. For a review of these and related features, see 
e. g. [ 1 ].. ., ~,,'" ;',; 

The recent practical application of dead times of a generalized type 
makes it desirable to have at one's disposal also an explicit formal 
description of the corresponding interval density. Its shape is expected 
to be somehow "intermediate" between those belonging to the two usual 
types of dead time, where the exact meaning of such a statement is 
probably best left unspecified. 

* This report is dedicated to Alfred Spernol on the occasion of his 
recent sixtieth birthday, in recognition of his important contribution 
to the field of radioactivity measurements and as a tribute to his 
human qualities. 
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For the moment, the only relevant information available on the interval 
density is its Laplace transform, which was first found by Tak~cs [2]. 
That author has shown that if an original Poisson process (of rate p) has 
passed through a generalized dead time (of the Albert-Nelson type), 
characterized by the two parameters ~ and e, the transformed interval 
density is given by the expression 

ef (s; p) 
(ep + s) [ p e-( ep+s)~ ] 

p + s s + ep e-( Sp+s) ~ 
(1) 

As for most applications we have to know the density as a function of 
time, the main aim of the present study consists in finding the 
corresponding interval density ef(t;p) in the time domain. 

2. Inversion of the transform 

For finding the original of the transform (1), it will be useful to 
remember that for an extended dead time (i.e. e = 1) the corresponding 
Laplace transform is given by [3] 

ef(s;p) 

a result which can also be readily 
it is possible to write (1) in the 

ef(s; p) [ 
p 

= + 
p + s 

obtained 
form 

s ] 
e( p + s) 

from (1). As a 

ef(s; ep) 

(2) 
f 

consequence, 

(3) 

The interpretation of the transforms appearing in the bracket on the 
right-hand side of (3) is straightforward. For the exponential interval 
density of an unperturbed Poisson process we have 

4>(t) for t to, 
,,~ t¥,I' ,-..", 

(4 ) 

thus 

4>(s) = 
p 

p + s 

Application of the well-known rule valid for a derivative, namely 

s 4>(s) - 4>(+ 0) s 4>(s) - p , (5) 
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shows that the bracket in the transform (3) corresponds to the original 
function 

since 
dt 

1 
+ -s 

9s 

p 4>(t). 

4>(t) 

4>(t) 

1 

9 
aCt) 

_1 [d4> + ] + P aCt) 
9p dt 

1 d4> 
+ -- + 

9p dt 

(1-9) 
9 

1 
aCt) 

9 

4>(t) 

Therefore, the general rule for finding the originaa interval density 
is given by the convolution 

9f (t;P) 
1 

{aCt) - (1-9) 4>(t)} * ef(t;9p) 
9 

1 
- ef(t; 9p) 
9 

1-9 
(-) 4>(t) * ef(t; 9p) 

9 

A simple check is possible here for the limit 9 
indeed that 

1, where we find 

9=l f (t;P) ef(t; p) , 

as expected. The case 9 = 0 is more difficult and will be treated 
at the end of this report. 

For the general case, the only problem which remains to be solved 
for a complete inversion of (1) is then given by the need to perform 
a convolution of the type 

4>(t) * ef (t;9p) , 

since this will be needed for evaluating the second contribution 
appearing in (6). " ~,.,., "; 

Let us first recall the explicit form which has been found to hold 
for the interval density after an extended dead time. It can be 
written, according to eq. (21) in [3J, as 

with 

e f (t;9p) 
J 

I Aj(t) 
j=l 

9p 
[- 9p (t-j-.;) Jj-1 e -j 9p-.; 

(j-1) ! 

for t> j-.; and where J is the largest integer below t/-.;. 

(6) 

(7) 

(8) 



4 

Our task will therefore be accomplished if we can give a general 
expression for 

= ~(t)* A~(t) , 
J 

because then, according to (6), we can simply write 

8f (t; p) 
J 

= L 
j=l 

1 1-8 
{- A'.(t) - (-) B'.(t)} 

8 J 8 J 

Let us first perform the following rearrangements 

(_1)j-1 
(8p)j e-j8p• (t-j.)j-1 * pe-pt 

(j-1) ! 

(9) 

(_1)j-1 
--- p [8p e-8p.]j o(t-j.) * t j - 1 * e- pt • (10) 

(j-1)! 

The second convolution can be written more explicitly if we have 
recourse to the definition, i.e. 

co 

-co 

since f(t) = 0 for t < O. 

We then find 

t j - 1 * e -pt 
t 

t 

f f 1(a) f 2(t-a) da, 
o 

e-pt f aj - 1 e pa da • 
o 

This type of integral is simple to solve. A first integration by 
parts yields 

a 

n 
.;-;. J 
'a 

n-1 ax x"; e dx, 

and repeated application leads to 

f xn eax dx 
xn eax n xn- 1 

[ 
eax n-1 f xn- 2 eax dx] 

a a a a 

n-2 

(11) 

xn eax n xn- 1 eax n(n-1) eax n-2 
+ ( f xn- 3 e ax dx] 

a 2 a 2 n a a 

n n! n-k 
eax L (-l)k 

x 
(12) 

k=o (n-k) ! ak+1 
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We therefore have in our case (since 00 = 1) for (11) 

j-1 (j-1)! j-1-k 
(_l)k 

t t 
Cj(t) = e- pt [e pt I k+1 ]0 

k=o (j-1-k)! P 

j-1 (j-1) ! j-1-k (j-1)! 
= { I (-l)k t } + (-1) j e- pt . (13) 

k=o (j-1-k)! pk+1 pj 

Hence, for the original coefficient Bj this then leads with (10) to 

Bj(t) J·-1 k . 1 k . 
e _ _ (-_1_)_ (t-j't")J- - + (-l)J e-p(t-J·'t")} ( -1) j-1 P [ e p e - p 't"] j { I 

k=o (j-1-k)! pk+1 pj 

or also, after some rearrangements, to 

BJ!(t) . 
J-1 (_l)k 

= -p[e e-ep't"p {e-p(t-j't") + (-l)j I [p(t-j't") ]j-1-k} (14) 
k=o (j-1-k)! 

The formulae (8) and (14) give the explicit expressions for the 
coefficients appearing in (9). 

In order to avoid ambiguous mathematical expressions (of the type 
"0/0") which may occur for e = 0, we prefer to write (9) in the 
equivalent, but more useful form 

ef (t; p) 
J 

I [eAj(t) + (1-e) eBj(t)] 
j=l 

in which the new coefficients are now given by 

Aj(t) -jex 

eA/ t ) 
" ~, "', (~8T .) j-1 P , 

e J 
and 

(j-1) ! 

-B'.(t) 
[ -T. 

j 
eBj(t) 

J p e -j8x ej - 1 e J - (-l)j I 
e k=l 

where we have used the abbreviations 

x = p't" and 

T j p(t-j't") 

(_l)k 
T~-k ] 

(j-k) ! J 

(15) 

(16) 
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It is also possible, of course, to bring the final result into the 
more compact form 

ef(t; p) eAtot(t) + (l-e) eBtot(t) , 

with 
J 

eAtot(t) = I eAj(t) 
j=l 

= 
J 

I eB/ t ), 
j=l 

and 

although this brings little advantage. A simple computer program 
allows us to evaluate directly eAtot and eBtot. 

3. Limiting cases 

It is of interest to check the behaviour of (15) for the traditional 
types of dead times. 

For an extended dead time, i.e. for e = 1, we have 

J 

1 f (t;P) I 
j=l 

J 

P I 
j=l 

(-T. )j-1 
__ J __ e-jx 

(j-1)! 

as results from a comparison with (8), for e 1. 

ef(t;p) 

For a non-extended dead time, i.e. for e = 0, we obtain first from 
(17) and (18) 

of(t; p) 

Since it follows from (16) that 

and 

we obtain (still for e 0) 

of(t; p) = p + p(e -pt+x - 1) -p(t-1;) p e nf(t; p) • 

(17) 

(18) 

t (19) 

(20) 

Both the results (19) and (20) clearly correspond to our expectation. 
Obviously, these simple checks cannot be taken as a proof for the 
correctness of the general formulae (15) and (16); they only guarantee 
that the limiting cases are correct. 
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A more detailed discussion of the generalized interval density 
(including possible approximations) as well as a comparison with 
experimental results have to be postponed to a later study. 

Mme M. Boutillon should be thanked for her careful reading of a draft 
version. 
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