Minimum activity and maximum impurity rates for SIR samples

by A. Rytz

Bureau International des Poids et Mesures, F-92310 Sèvres

Abstract

Limiting values of sample activity (for an ionization current of at least 1.8 pA) and impurity content (for a contribution to the overall uncertainty of not more than 0.2 %) are established. A table is presented with data for 49 source nuclides and 83 possible impurity nuclides.

After eight years of experience with the International Reference System for activity measurements of γ -ray emitting nuclides (SIR) a detailed description of which may be found in [1] -, it is now possible to state useful limits for the activity and impurity of samples suitable for SIR. These limits depend on the sensitivity of the measuring equipment and the precision aimed at. The fact that more than 90 % of all the measurements performed were within these specifications shows that the suggested limits are reasonable.

1. Activity limits

The <u>lower</u> limit for the sample activity may be derived from a comparison of chamber response with background current, the latter being 35 nA at most. The chamber response can be expressed by the activity A_e ("equivalent activity") necessary to produce the same ionization current as that obtained with the strongest of the five reference sources taken at a fixed date. Experience has shown that a current less than one half of that produced by the weakest reference source (which is 94 times weaker than the strongest one), or less than 1.8 pA, gives too low a precision to be useful for the SIR. Thus, the sample activity should be not less than $A_e/188$. For radionuclides with a half life shorter than 5 d it is desirable to repeat the measurement several times, with about one half life in between, in order to check the consistency of impurity corrections. Therefore, in these cases the minimum activity is assumed to be eight times higher (see Table 2).

The <u>upper</u> limit for a useful measurement is about 600 times the lower one. However, as this has practically never been exceeded in the past for radionuclides with longer half lives, it seems hardly worth mentioning.

2. Impurity level

The statement of a tolerable impurity rate is even more arbitrary than that of a minimum acceptable activity. Impurity rates must be indicated by the participant in percent of the main activity, at the reference date. The shorter the half lives involved, the more important is a correct and unambiguous statement of the reference date. Future misunderstandings will be avoided if the following rule is adopted throughout: the reference date is always the date of the purity analysis (by γ -ray spectroscopy), and the sample activity, measured some time before or after, must be corrected for that time difference. In general, impurity rates are reported with about 20 % relative uncertainty. A single impurity should not contribute more than, say, 0.2 % to the overall uncertainty of the SIR result which is about the uncertainty obtained with a sample activity at the lower limit defined above, namely

$$A_{\min}^{S} = A_{\rho}^{S}/188 , \qquad (1)$$

where A_e^s is the equivalent activity for the sample s. Therefore, if A_e^i is the equivalent activity of the impurity nuclide, the ratio

$$p = A_e^i / A_e^s$$
 (2)

expresses the tolerable percentage impurity rate. Although this assessment is only a crude approximation, it leads to useful values of what can be considered as an acceptable impurity limit.

3. List of minimum activities and maximum impurity rates

Table 1 presents limiting values derived along the lines described in the two foregoing sections. The values for A_e are rounded weighted means of the presently available SIR results, calculated according to [1], p. 1053. For each radionuclide, observed or expected [2, 3] impurities are indicated in the order of their mass numbers. Those identified by the SIR participants are underlined. Maximum tolerable impurity rates were calculated according to eq. (2); they are indicated in percent of the main activity at the reference date. Very short-lived impurities have not been considered. A values of radionuclides for which no SIR result was available were calculated by means of the formula

$$A_{e} = \frac{10^{6}}{(60 \sum_{i=1}^{n} E_{i} P_{i} f_{i})}, \qquad (3)$$

where

E.

 E_i is the photon energy of the ith γ ray, expressed in MeV, P_i is the corresponding emission probability and f_i is the ordinate of the (reduced) efficiency curve

(see [1], Fig. 10), corresponding to E_i as abscissa.

The decay data were taken from [2, 4, 5].

Radio-	A _e	$A_{\min} \approx \frac{A_e}{188}$	Tolerable i	mpurity rate, p	$b = A_e^i / A_e^s$	Impurities ide	entified by S	IR participan	ts are underli	ined; an aster	risk after	
nuclide	(kBq)	(kBq)	(% activity	at reference d	late)	the element sy	mbol means "	in equilibriu	m with daughte	er products".		
22 _{Na}	7 500	40								<u> </u>		
24 _{Na}	5 000	850	72 _{Ga} 1•4									
⁴⁶ Sc	8 300	44	47 _{Sc} 20	⁴⁸ Sc 0.6								
⁴⁷ Sc	168 000	900	⁴⁶ Sc 0•05	⁴⁸ Sc 0.03								
⁵¹ Cr	488 000	2 600	54 _{Mn} 0.04	$\frac{58}{0.03}$	$\frac{59_{\rm Fe}}{0.03}$	$\frac{60}{0.014}$	$\frac{65}{0.06}$	⁷⁵ Se 0.09	$\frac{124}{0.02}$	$\frac{137}{0.05}$	$\frac{192}{0.04}$	ω
⁵⁴ Mn	19 200	100	48 _V 0.3	$\frac{51}{25}$	⁵² Mn 0•25	⁵⁶ Co 0•25	⁵⁸ Со 0.85	⁵⁹ Fe 0•75	$\frac{60_{\text{Co}}}{0.3}$	$\frac{65}{2n}$		
56 _{Mn}	10 600	900										
⁵⁶ Co	5 100	27	57 _{Co} 32	⁵⁸ Co 3•2	⁶⁰ Co 1•3							
57 _{Co}	168 000	890	⁵⁶ Co 0.03	⁵⁸ Co 0.09	$\frac{60}{0.04}$							
58 _{Co}	16 300	87	56 _{Co} 0•3	57 _{Co}	$\frac{60_{\rm CO}}{0.4}$							
59 _{Fe}	14 700	78	60 _{Co}			~						

Table 1 - Minimum activity and maximum-impurity rates for SIR samples

Radio-	A _e	$A_{\min} \approx \frac{A_e}{188}$	Tolerable impurity rate, $p = A_e^i/A_e^s$		A_e^i/A_e^s	Impurities identified by SIR participants are underlined; an asterisk af					sk after
nuclide	(kBq)	(kBq)	(% activity at	reference date))	the element symb	ol means "in	equilibrium W	ith daughter	products".	
60 _{Co}	7 060	37	·					<u> </u>		<u> </u>	
65 _{Zn}	30 000	160	60 _{Co} 0.23		⁶⁹ Zn ^m * 1•2	$\frac{75_{se}}{1.4}$					
67 _{Ga}	115 000	4 900	57 _{Co} 1.4		66 _{Ga} 0.06						
75 _{Se}	43 000	230	60 _{Co} 0.16	¹³⁷ Cs 0.64							
⁸² Sr- ⁸² Rb	14 100	75	ţ								
⁸⁵ Sr	30 100	160	59 _{Fe}	⁸⁴ Rb 0.6	86 _{Rb}	⁸⁹ Sr 2•106					
88 _Y	6 900	37	56 _{Co}	57 _{Co} 24							
95 _{Zr} -95 _{Nb}	7 300	39	⁶⁰ Co 1.0		103 _{Ru*} 4						
95 _{Nb}	20 600	110	95 _{Zr*} 0.35		123 _{Te} m 6.5	125 _{Sb} 1.7	125 _{Te} m 1 700	125 _I 3 100	129 _{Te} m _* 5•10 ⁵	¹⁴¹ Ce 13	$\frac{144}{14}$ Ce*
99 _{Mo-} 99 _{Tc} m	64 000	2 730	⁶⁰ со 0•1		⁹⁵ Zr* 0•1	⁹⁵ Nb 0•3	⁹² Nb ^m * 0•25	¹⁰³ Ru* 0.45	106 _{Ru*} 1.1	110 _{Ag} m _* 0.09	124 _{Sb} 0.14
			$\frac{127}{\text{Sb}} \times \frac{1}{0.38}$		132 _{Te} *	133 ₁ * 0•42	¹³⁴ Cs 0.15	¹⁴⁰ La 0•12			

4

Table 1 (cont'd)

Table 1 (cont'd)

Radio-	A _e	$A_{\min} \approx \frac{A_e}{188}$	Tolerable impur	rity rate, p	$= A_e^i / A_e^s$ In	mpurities iden	tified by SIR	R participant	s are underli	ned; an asterisk	after
nuclide	(kBq)	(kBq)	(% activity at	reference da	te) ti	he element sym	bol means "in	n equilibrium	with daughte	r products".	
99 _{Tc} m	153 000	6 500	99 _{Mo*} 0.41	106 _{Ru*} 1.1	131 _{I*} 0.25	132 _{Te*} 0.51	133 _{1*} 0.17				
103 _{Ru} –103 _{Rh} m	30 500	160	97 _{Ru*} 2.3	105 _{Rh} * 6•6	106 _{Ru*} 2.5	¹⁴¹ Ce 8.7					-
106 _{Ru} –106 _{Rh}	76 500	400	103 _{Ru*} 0.4	137 _{Cs} 0.36							
¹⁰⁹ Cd	81•10 ⁵	43 000	⁵⁷ Co 0.02	60 _{Co} 8•10 ⁻⁴	$\frac{65}{2n}{0.003}$	$\frac{110_{Ag}^{m}}{7.10^{-4}}$	¹¹⁵ Cd ^m * 0.06	131 _{I*} 0.005	$\frac{134_{Cs}}{0.001}$	$\frac{152_{\rm Eu}}{1.8\cdot10^{-3}}$	
110 _{Ag} m	6 000	32	108 _{Ag} m* . 1.6								
111 _{In}	43 000	1 800	$\frac{114_{\text{In}}^{\text{m}}}{5.2}$	125 _{Sb} 0.8							
113 _{Sn} -113 _{In} m	59 000	315	$\frac{114_{\text{In}}^{\text{m}}}{3.7}$	117 _{Sn} m 2.2	119 _{Sn} m 1.6.10 ³	121 _{Sn} m* 800	¹²³ Sn 40	$\frac{125}{0.6}$			
123 _I	120 000	20 000	$\frac{125_{I}}{3.0}$								
125 _{Sb}	37 000	200	113 _{Sn} 1.6	117 _{Sn} m 3.5	121 _{Sn} m 1 300	¹²³ Sn 67	125 _{Sn*} 1.5				
125 ₁	6 . 5•10 ⁷	343 000	$\frac{126_{I}}{0.000} 5$	$\frac{131}{1.000}$ 6	137 _{Cs} 0.0004	~					

Ś

Table 1 (cont'd)

Radio-	^A e	$A_{\min} \approx \frac{A_e}{188}$	Tolerable impu						s are underlined; an aste	
nuclide	(kBq)	(kBq)	(% activity at	reference da	te) th	ne element sy	nbol means "in	n equilibrium	with daughter products".	
131 _I	40 400	215	75 _{Se} 1.0	125 _I 1 600	126 ₁ 0.8					
133 _{Ba}	44 000	235	60 _{Co} 0.16	⁶⁵ Zn 0•6	$\frac{131_{\text{Ba}}}{0.8}$	132 _{Cs} 32	$\frac{134}{0.2}$	135 _{Ba} m 8	¹⁴⁰ La 2	
¹³⁴ Cs	10 100	54	22 _{Na} 0.7	⁸⁴ Rb 1.7	⁸⁶ Rb 17					
¹³⁷ Cs	27 600	150	60 _{Co} 0•25	$\frac{134_{\rm Cs}}{0.3}$						
139 _{Ce}	134 000	700	¹⁴¹ Ce 2							
¹⁴¹ Ce	266 000	1 400	⁵¹ Cr 1.8	113 _{Sn*} 0.2	137 _{Ce} m* 1.7	137 _{Ce} 4	¹³⁹ Ce 0.5	¹⁴³ Ce* 0.2	¹⁴⁴ Ce* 1.1	
¹⁴⁴ Ce- ¹⁴⁴ Pr	282 000	1 500	137 _{Cs} 0.09	¹³⁹ Ce 0.4	¹⁴¹ Ce 0.9	154 _{Eu} 0.04	192 _{Ir} 0.06			
152 _{Eu}	14 700	78	$\frac{154_{Eu}}{0.9}$	155 _{Eu} 32						
154 _{Eu}	13 800	73	155 _{Eu} 35							
169 _{Yb}	78 000	410	175 _{Yb} 5							

Table 1 (cont'd)

Radio-	A _e	$A_{\min} \approx \frac{A_e}{188}$	Tolerable impurity rate, $p = A_e^i/A_e^s$			Impurities identified by SIR participants are underlined; an asterisk after				
nuclide	(kBq)	(kBq)	(% activity at	reference o	late)	the element sy	mbol means "in equili	brium with daughter products".		
182 _{Ta}	13 800	70				~				
192 _{Ir}	19 000	100	¹⁹³ Ir ^m 4•10 ⁵	194 _{Ir} 11						
195 _{Au}	325 000	1 727	196 _{Au} 0.11							
201 _{T1}	309 000	13 000	200 _{T1} 0.04	202 _{T1} 0.11	$\frac{203_{\rm Pb}}{0.18}$					
203 _{Hg}	67 400	360	54 _{Mn} 0•28 _	⁵⁸ Co 0•24	⁶⁰ Co 0.10	197 _{Hg} 7.0	197 _{Hg} m _* 3.6		7	
203 _{Pb}	56 700	300	200 _{T1}	201 _{T1} 5.4	201 _{Pb} * 0.39					
207 _{Bi}	10 900	60	, et an							
241 _{Am}	2 . 05•10 ⁶	11 000	239 _{Pu} 250	242 _{Cm} 27	243 _{Am} 0.28					

-----a...

Radionuclide	Supplier	Year	Activity (kBq)	A _{min} *	r ₃ (%)	S(A _e) (%)
⁵⁷ Co	NPL	1976	430	891	0.2	2.02
67 _{Ga}	LMRI	1981	2 290	4 900 (613)	0.18	0.23
¹⁰⁹ Cd	UVVVR	1978	3 802	43 000	0.23	1.38
	NPL	1980	39 300		0.16	1.65
	AECL	1981	17 741		0.28	1.41
123 ₁	LMRI	1981	4 118	5 100 (637)	0.17	0.33
	BCMN	1983	1 860		0.27	0.61
	LMRI	1983	1 795		0.27	0.54
125 _I	NBS	1977	273 500	343 000	0.20	1.49
	ASMW	1977	36 280		1.19	1.22
	LMRI	1980	22 500		4.55	4.56
201 _{T1}	LMRI	1983	3 480	13 100 (1 642)	0.62	2.5
241 _{Am}	OMH	1977	8 113 ·	11 000	0.17	0.37
	AAEC	1977	4 362		0.19	0.37
	UVVVR	1978	3 475		0.19	0.39
	**	1979	5 476		0.17	0.38

۲

Table 2 - SIR samples having an activity below the "acceptable" lower limit, A_{min}

* For ⁶⁷Ga, ¹²³I and ²⁰¹T1 the values have been multiplied by 8 because of the short half lives. The net values are indicated in parentheses.

8

4. SIR measurements of samples with $A < A_{min}$

Table 2 summarizes fifteen SIR measurements on samples with activities below the "acceptable" limit, A_{min} .

It can be seen that r_3 , the uncertainty of the ionization-chamber measurement alone, was mostly of the order of 0.2 %, except where impurities were significant. The overall uncertainty, $S(A_e)$, is the sum in quadrature of r_3 and the components r_1 and r_2 of the activity measurement, as indicated in the corresponding SIR registration tables. In all these examples $S(A_e)$ is larger than 0.2 %, which is in most cases due to an activity lower than A_{min} .

References

- [1] A. Rytz, The international reference system for activity measurements of γ -ray emitting nuclides, Int. J. Appl. Radiat. and Isotopes 34, 1047-1056 (1983)
- [2] F. Lagoutine, N. Coursol et J. Legrand, Table de radionucléides, CEA-LMRI, Saclay (France) 1977-1982
- [3] P. Dryák, P. Novotná, L. Kokta and P. Kovář, Impurities in radionuclid materials, UVVVR-Report No. 8, Prague, 1981
- [4] NCRP Report No. 58, A handbook of radioactivity measurements procedures, Washington, D.C., 1978
- [5] C.M. Lederer and V.S. Shirley, eds., Table of isotopes, 7th edition, Wiley and Sons, New York, 1978

(November 1983)

9

er het min