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Abstract 

A study is made concerning the experimental conditions for 
which the selective sampling method for measuring source 
activities reaches its highest precision. It turns out 
that the optimum range for activities is of the order of 
105 Bq for the electronic equipment now in use. The 
information contained in the present report also allows 
one to determine the measuring time which is needed for 
obtaining a given statistical uncertainty under clearly 
specified measuring conditions. 

One of the attractive features of the selective sampling (SESAM) metHod 
for absolute activity measurements of nuclides which undergo beta-gamma 
decay consists of the fact that it is also applicable at very high count 
rates, which is a region where the traditional coincidence method 
requires large and difficult corrections [1]. An immediate question thus 
arising is whether there exists a source activity for which this approach 
is best in the sense that a certain statistical precision is obtained in 
a minimum measuring time and, if so, where this will be located. It is 
the purpose of this report to outline a simple quantitative answer to 
this question. 

We first have to determine which of the experimentally measured 
quantities are contributing in a significant way to the final 
uncertaillty. Fortunately, this happ~n~l:O be',hn easy task. The activity 
No of the radioactive source we want to measure can be written in the 
form 

where P~ is the measured beta count rate (corrected for dead time, etc.) 
and ES 1S the counting efficiency of the proportional counter. Ps can 
usually be measured over such a long time interval that its statistical 
uncertainty is negligibly small*. Thus, we shall assume that in essence 

* In fact, some problems do arise at very high count rates where the 
large dead-time corrections involved may become less accurate. 
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the uncertainty of No is due entirely to £~. In the SESAM method this 
quantity is given by 

£~ = 1 - giG , (2) 

where g and G are arrival densities of gamma pulses in two distinct time 
regions, which in practice can be measured as average channel contents on 
a multichannel analyzer. For the normal situation where £~ is not too far 
from unity, G is considerably larger than g. In addition, G is obtained 
by averaging over many more channels than is possible for g, which is 
restricted to the region of the "gap" in the time spectrum, caused by 
the extended dead time T. It is a realistic simplification, therefore, 
to assume that the precision attainable for £~, and thereby for No' 
is practically conditioned by g. The latter quantity, in turn, 
is obtained (Fig. 1) by 

where c is the number of channels considered (within the "gap") in which 
Ng gamma pulses have been registered during the given measuring time t. 
Slnce c is a known integer, the precision of g is determined by Ng , for 
which we can assume that Poisson statistics holds. 

In a more quantitative way, the simple reasoning is therefore as follows. 
If Sy denotes the estimated standard deviation of a quantity y, and 
ry = syly the corresponding relative uncertainty, we see from (2) that 

s = 
£~ 

since rG« r g , as explained above. Assuming now that Ng follows Poisson 

statistics, we have rg Ng~ and therefore 
-I; 

(1 -£@)_1_. 
s"./£Q == 

<-t-' t-' £~ IN 
g 

(4) 

Hence, the precision of the measured activity No is highest, i.e. its 
relative uncertainty is minimum, if - for a given efficiency £~ - the 
quantity Ng reaches a maximum. 

In this way, the original problem of determining the best measuring 
conditions has been transformed into the simple question of evaluating 
the parameters which correspond to a maximum of Ng • 
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Fig. 1 - Schematic plot of the observed time spectrum of gamma pulses. 
The quantity of interest, Ng , corresponds to the hatched ar~a. 

For a given measuring time, the number of registered gamma counts Ng is 
clearly proportional to the number of "writing" cycles and to the average 
number of pulses P which arrive (within T) per cycle. In principle, 
a cycle can be initiated by any of the beta pulses* which have succeeded 
in passing the extended dead time T. For an original beta count rate P~, 

the output rate R~ is given by 

-P~T 
R~ = P~ e • (5 ) 

However, . W must not be identified wi th R~ bec'ause the beta pulses 
arriving during a writing cycle cannot start a new cycle. This only 
becomes possible for the first event that occurs after the end of such 
a cycle. This situation corresponds exactly to a series arrangement of 
two dead times, where the first, of the extended type, has the value 
~1 = T, whereas the second, non-extended, is given by the length of the 
writing cycle ~2 = L, for which we put 

L = KT. (6) 

* We assume in what follows that the first beta pulse available will be 
used. This allows one to speed up the registration and is the mode now 
currently applied. Since the region before the "gap" is then distorted, 
the quantity G will be determined by means of the registered gamma 
pulses after the gap (Fig. 1). 
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Such a situation is schematically displayed in Fig. 2, and it is known 
that for a Poisson input r, the count rate observed after the two dead 
times is given by [2J 

R = ______ ~r~ ____ ~ 
(1 - a) x + eax ' 

(7) 

where a = ~1/~2 and x = r ~2. A derivation of this expression can be 

found in [3J, for example. 

R 
extended non-extended 

Fig. 2 - Scheme of the series arrangement of two dead times ~1 and ~2. 

The input and output count rates are rand R, respectively. 

For the case we are considering here, this corresponds for the rate W 
of writing cycles, when the notation indicated above is used, to the 
relation 

W P@ = P@ (8 ) 

(1 - ~) P~T X 
P~ L + e (K - 1) X~ + e ~ 

if we put P~ T = X~ • 

~ 

As for the number of unpaired gamma pulses P registered per cycle within 
the "gap" one finds 

P (9) 

We are now in a position to indicate an expression for the number of 
events Ng in a given measuring time t, which is 

= (10) 

It may be useful to recall that by means of P. Breonce's new "speed 
converter" (a detailed description of which is in preparation), the gamma 
pulses are registered during the "writing" cycle in a fast buffer-memory 
device. By repeated accumulation, all the arrival times corresponding to 
a very large number of cycles can thereby be stored in real time. 
The transfer of this information to the multichannel analyzer is slow, 
but since it is so rarely performed, the time needed for this operation 
is negligible compared with the sum of the "writing" cycles. This is the 
reason why it has not been taken into account in the above analysis. 
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If, instead of the first beta pulse available, we should prefer to start 
a new cycle only with beta event number n, this would clearly reduce the 
writing cycles. For a start with pulse n, the quantity W, defined by (8) 
and appearing in (10), would have to be replaced by 

= n = 1, 2, ... , (8' ) 

with R~ given by (5). Obviously W1 W. 

Since we are primarily interested in N as a function of the source 
activity No (which is proportional to ~B)' as well as in its dependence 
on the length T of the cumulative dead time imposed, we can assume in 
what follows that E~, Ey and t are constants. The function to be studied 
is therefore 

f(p,T) = (11) 
p(L - T) + e pT 

where p~ has been abbreviated to p for simplicity. 

Let us first consider the situation where, for a given T, we look for the 
value of p which gives a maximum for Ng and hence the best precision ~or 
No' as explained before. For the partial derivative, an elementary 
calculation yields 

of p T [2 _ p(L - T + T e PT )] 
Gp p(L - T) + e pr p(L - T) + e pT 

The condition for the maximum is therefore (LIT = K) 

P T (K - 1 + epT) = 2 [( K - 1) P T + e PT ] , 

that is 

(12) 

if we use the abbreviation Popt T = Xp , where Popt is the beta count 
rate which gives a maximum gap content Ng for a gIven value of T. 

Equation (12) must be solved numerically; the result is given in 
graphical form in Fig. 3 for the range of practical interest. It can 
be seen that Xp does not depend in a critical way on the length L of the 
writing cycle. 
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Fig. 3 - Graphical plot for the solutions of eq. (12) and eq. (13)'. 

One may see that in the limiting case K = 1 we have Xp = 2. This 
corresponds to the (unrealistic) situation where the whole writing cycle 
is performed during the dead-time period T and therefore causes no 
additional loss of time. However, such a measurement would only give g, 
instead of both G and g which are needed in (2) for the determination 
of £~. 

Let us consider a practical numerical example. For T = 25 lJS and 
L = 125 !ls, for instance, one finds Xp = 2.718. This corresponds to 
a beta count rate p = 109-10 3 s-l, thus to an optimum source activity No 
of about'120 kBq (assuming £6 = 0.9)'. ~This confirms our previous 
statement that the SESAM method is particularly suited for measuring high 
activities. 

While it is clearly useful to know for which activity the method has its 
highest sensitivity, it is perhaps even more interesting to dispose of 
information permitting one to compare the sensitivity over a wide range 
of source strengths. In view of the relation (4), we can simply use the 
quantity Ng for such a comparison, which is proportional to the function 
f(p,T) given by (11). In Figures 4a and 4b we have plotted a number of 
curves which give Ng as a function of p for some representative 
parameters T and K. They are all (quite arbitrarily) normalized in such 
a way that the maximum for T = 30 flS and K = 4 reaches unity. We conclude 
from the shape of these curves that practical measurements can still be 
usefully performed at activities which correspond to several times the 
optimum value, in particular for the smaller dead times. Fig. 4 shows 
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that efficient measurement of activities of 200 kBq and above requires 
T values in the range of 15 to 20 ~s. On the other hand, the effect of K 

on the total measuring time then tends to become negligible. 

Within rather narrow limits, imposed by practical considerations (mainly 
related to instrumental dead times), the numerical value of the extended 
dead time can be freely chosen. For the sake of curiosity, at least, 
one may therefore also look for the optimum value of f when T is taken as 
a variable. 
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Fig. 4 - Graphical representation of the quantity Ng, as a function of 
the beta count rate p and for some values of the extended dead 
time T and the ratio K = LIT. For the normalization, see text. 
a) For p ~ 250-10 3 s-l and T ;;. 20 ~s. 
b) For p ~ 500-10 3 s-l and T ~ 20 ~s. 
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Starting again from (11), we find for the partial derivative 

= 
p(L - T) + e pT 

[1 _ pT (e pT - 1) ] 
p(L - T) + e PT 

This leads for the maximum of f to the condition 

or 
pT (e pT - 1) = p(L - T) + e pT 

XT e (XT - 1) = K XT ' (13) 

if we use again the variable K = LIT and denote p Topt by XT • 
A comparison of (13) with (12) shows that Xp and XT are not identical, 
which means that the best measuring conditions depend on the quantity 
we choose as a "variable". However, this is not too surprising, for the 
function f(p,T) given in (11) has no absolute maximum for T> 0 and p 
finite (cf. Fig. 3). For fixed values of either T or p we can only reach 
relative maxima for f and therefore N • We may note in passing that for T 
variable, the situation where the influence of L on the number of cycles 
is neglected corresponds to the limit K = 0 and yields the value XT = 1 
(cL Fig. 2). 

For the results of some preliminary experimental tests see [4]; they tare 
in good agreement with expectation. Numerical checks concerning the 
absolute values of Ng predicted by (10) have shown them to be very 
reliable. In practice, the simplest application of the results presented 
in this report may be as follows. For the given experimental conditions 
one first determines from (4) the value of N needed for attaining 
a prescribed precision rN of the activity. ~his value, when substituted 

o 
in (10), allows us to evaluate the corresponding measuring time t. 

M. Boutillon and P. Breonce deserve special thanks for their kind 
interest in the problems treated in this report. 

"j ~,. ,-If •• 
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