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Abstract 

A general formula which makes use of the Bell polynomials 
is given for the ordinary moments of self-convolutions. 

1. Introduction 

The need to dispose of a general expression for the moments of 
a variable, the probability density of which is given by a multiple 
self-convolution, arises in various fields. Thus, we have been led to 
this problem in an attempt to describe the counting losses due to 
energy selection [lJ, and recently the same problem has reappeared ~n 
the description of doubly-stochastic Poisson processes [2J. It is the 
purpose of this report to derive a general expression which can be 
useful for such applications. 

It is well known that a sum s of k independent random quantities x, 
i.e. 

(1) 

where all contributions have the same probability density f(x), is 
described by a density fk(x) which is the k-fold self-convolution of 
f(x), hence 

k = 1, 2, ••• ( 2) 

This obviously assumes x to be continuous; the formal changes needed 
for dealing with a discrete variable are well known and need not be 
repeated here. Besides, this distinction is irrelevant for the moments. 

If we note the ordinary moments of Xj or s (of order r) by 

(3) 

the question arises as to how these two series are interrelated. 
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2. A naive approach 

Let us first consider the simple case of two variables xl and x2' 
which are supposed to be independent, but not necessarily identical. 
For s = xl + x2 the probability density is 

and the first three moments are readily found to be given by 
(see e.g. [3 J) 

2ml = mfl) + mf2) 

2m2 = mfl) + ~2) + 2 mfl) mf2) , 

2m3 = m~l) + m~2) + 3 [mfl) m~2) + mf2) m~l)J • 

(4 ) 

Which are the corresponding expressions for a k-fold self-convolution? 
Let us begin with a very naive empirical approach by evaluating the 
first three moments for successive values of k. 

a) First moment 

Here it will be obvious from (4) that the general formula is simply 

(5) 

b) Second moment 

By repeated application of (4) one finds for identical variables 

- for k 2: 

- for k = 3: 

- for k = 4: 

This might suggest for the second moment a general formula of the type 

km2 = k [m2 + (k-l) mrJ • (6) 

This can be shown to be correct by forming the variance 

ka2 = km2 -
2 

kml 

= k [m2 + (k-l) mrJ - (k ml)2 

= k (m2 - mb = k a2 , (7) 

a relation which is known to hold generally for self-convolutions. 
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c) Third moment 

As before we can conclude from (4) 

- for k 2: 2m3 = 2 (m3 + 3 m2 ml) 

- for k = 3: 3m3 3 (m3 + 6 m2 ml + 2 my) 

- for k = 4: 4m3 = 4 (m3 + 9 3 m2 ml + 6 ml ) . 
This suggests as a possible general formula for the third moment 

(8) 

A proof of the validity of (8) can again be obtained by forming the 
third central moment, namely 

k [m3 + 3 (k-l) m2 ml + (k-l)(k-2) myJ 

- 3 k[m2 + (k-l) mtJ k ml + 2 (k ml)3 • 

After some elementary rearrangements we find indeed 

Since the third central moments are known to be additive for 
convolutions, this proves (8). 

3. A better approach 

(9) 

The way in which the results (6) and (8) of the previous section 
have been obtained cannot be pursuern'much f#rther; we should make an 
attempt to replace guessing by a more systematic approach. This is 
indeed possible if we remember the fact that cumulants have the feature 
of being additive for convolutions, as is explained in any good 
textbook (see e.g. [4 J). 

Let the moment-generating function for a random variable x be defined 
by (t real) 

I 
r=O 

t r 
m -

r r! 

If its logarithm can be developed into a power series 

00 

~x(t) = In ~x(t) = L 
r=l 

(10) 

(11) 

the coefficients xKr are called the cumulants of the random variable x. 
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For a sum of k independent random variables Xj (which may have 
different distributions) 

it then follows from (10) that 

k 

and likewise 

~s(t) = IT ~x (t) , 
j=l j 

(1) 

(12) 

(13) 

A look at (11) and (13) now reveals that the cumulant (of order r) of 
a sum is equal to the sum of the corresponding cumulants of the 
individual random variables, i.e. 

for any order r ~ 1 • (14) 

If it is possible to find a way to pass from the cumulants back to the 
moments, our problem is solved. This decisive last step is possible, 
but not quite simple: it involves the use of the so-called Bell 
polynomials [5]. Instead of tabulating them, it may be more appropriate 
here to give a short list of the main correspondences among the moments 
they imply. These are 

- for the ordinary moments: 

m1 = K1 

m2 = K2 + K2 
1 

m3 - K3 + 3 K2 K1 + K3 
1 

11' ~,. ..... , 
"1 

(15) 

- for the central moments: 

1-14 (16) 
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Since the relation (14) can only be applied to (1) if the cumulants of 
the original variable x are known, we also need the inverse relations 

(17) 

K4 = m4 - 4 m3 m1 - 3 m2 
2 + 12 m2 m2 

1 - 6 m4 
1 

KS = mS - S m4 m1 - 10 m3 m2 + 20 m3 m2 = 30 2 - 60 m2 my + 24 mS 
1 m2 m1 1 

Additional explicit relations (up to order 10) can be found in [6 J. 

4. Application to self-convolutions 

For the case of k identically distributed variables, the basic 
relation (14) becomes 

(18) 
f 

. 

The applications are now straightforward. Thus, for the central moments 
one first finds with (16) 

confirming thereby the known relations (7) and (9). For fourth and 
fifth orders we obtain by means of (IS) and (18) 

= 
~~ "f," , .... \ 

k( 114 - 3 11 22) + 3 k2 1122 - k[11 +·3 k(k 1) 11 2J r r r - r4 - r2 ' 

(19) 

(20) 

These two new formulae show that the simple additivity expressed by 
(19) is no longer valid for central moments of higher order. 
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Let us now come back to our original problem, the evaluation of the 
ordinary moments. For the case r = 1, the result km1= k m1 is obvious. 
For r = 2 and 3 one obtains by means of the previously established 
relations 

2 k + k2 K2 k(m2 - my) + k2 m2 
km2 kK2 + kK1 = K2 = 1 1 

k[m2 + (k-1) my] 

km3 = kK3 + 3 kK2 kK1 + 3 = k K3 + 3 k2 
K2 K1 + k3 K3 kK1 1 

(21) 

k(m3 - 3 m2 m1 + 2 my) + 3 k2 (m2 2 + k3 m3 = - m1) m1 1 

k[m3 + 3(k-1) m2 m1 + (k-1)(k-2) my] • 

These two results are in agreement with the relations (6) and (8) 
obtained before. Likewise one can find, after a number of similar 
elementary rearrangements (omitted here), the following expressions for 
r = 4 and S 

km4 k {m4 + (k-1) [4 m3 m1 + 3 m~] + 6(k-1) (k-2) m2 my 

+ (k-1)(k-2)(k-3) mi} , 

kmS k{mS + (k-1)[S m4 m1 + 10 m3 m2] + (k-1)(k-2) [10 m3 my 

+ lS m~ m1] + 10(k-1)(k-2)(k-3) m2 mi 

+ (k-1)(k-2)(k-3)(k-4) mi} • 

(22) 

It is not difficult now to see what the general expression for a moment 
of order n will look like. Indeed a comparison with the Bell 
polynomials listed by Riordan ([S 1, table 3) reveals that kmn can be 
identif.ied with the polynomial Yn i.f~'~ put ',' (in order to change from 
his notation to ours) 

fj = k(j) = k(k-1)(k-2) ••• (k-j+1) 

(23) 
and 

If we want to express this fact in a more explicit way, we can write 

, ~ k 'i' nn 1 (~)jr 
n. J'~l (j) L • , n(n,j) r=l Jr' r! 

(24) 
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where the second sum extends over all partitions n(n,j) of mr such that 

n 

j and L r jr 
r=1 

n , 

with 0" jr 

coefficient 
in [7 J, the 

" j. If the combination n!1 ~ jr! (r!)jr is called a Bell 
r=1 

nBj(n+1-j, n-j, "', 2, 1), as has been done previously 
general formula can also be stated as 

m 
k n 

~ ~ n jr 
= .L k(Jo) L. nBJ-( ••• ) IT mr 

J=1 n(n,J) r=1 

Although equation (25) has not been derived here in a formal way, 

(25) 

its general validity is more than likely. The appearance of the Bell 
polynomials in this context is not a surprise as they provide the link 
between the cumulants and the ordinary moments. 
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