International comparison of activity measurements

of a solution of ¹³⁷Cs (May 1982)

Preliminary report

by A. Rytz

November 1982

ar by inc.

ет Т

Bureau International des Poids et Mesures F-92310 SEVRES The present report contains information enabling the participants to see how their own results are situated with regard to the others. It was found convenient to present the data in tabular form, without any discussion or interpretation. In a few cases minor omissions were unavoidable for reasons of space.

A full report with a thorough analysis of all the data will be published at a later date.

er eg ma

Table 1

List of participants

AAEC	Australian Atomic Energy Commission, Sutherland, Australia									
AECL	Atomic Energy of Canada Limited, Chalk River, Canada									
BCMN	Central Bureau for Nuclear Measurements, Geel, Belgium									
BIPM	Bureau International des Poids et Mesures, Sèvres, France									
ETL	Electrotechnical Laboratory, Ibaraki, Japan									
IER	Institut d'électrochimie et radiochimie de l'EPFL, Lausanne,									
	Switzerland									
IFIN	Institut of Nuclear Physics and Engineering, Bucharest, Romania									
LMRI	Laboratoire de Métrologie des Rayonnements Ionisants, Saclay,									
	France /									
NAC	National Accelerator Centre, Faure, South Africa									
NBS	National Bureau of Standards, Washington, D.C., U.S.A.									
NIM	National Institute of Metrology, Beijing, China									
NPL	National Physical Laboratory, Teddington, U.K.									
NRC	National Research Council, Ottawa, Canada									
OMH	Országos Mérésügyi Hivatal, Budapest, Hungary									
PDS	National Atomic Energy Agency, Jakarta, Indonesia									
PTB	Physikalisch-Technische Bundesanstalt, Braunschweig,									
	Federal Republic of Germany									
SCK	Studiecentrum voor Kernenergie, Mol, Belgium									
UVVVR	Institute for research, production and application									
	of radioisotopes, Prague, Czecho-Slovakia									

Ì

1.5	
1000	
10-14 Aug	
14072	
Sec. 1	

Table	2
-------	---

Labora- tory	Method	Dilution	Mixing ratio ¹³⁷ Cs/ ¹³⁴ Cs	Sources Mass range (mg)	Backing mass (µg cm ⁻²)	β det Gas	rector Pressure (MPa)	γ detector resol. at 662 keV (%)	Dead times $\begin{array}{c} \tau_{\beta} \\ \tau_{\gamma} \\ \tau_{c} \end{array}$ (µs)	*	Typical count rates $\begin{array}{c} {}^{N_{eta}}_{N_{eta}} & (s^{-1}) \\ {}^{N_{eta}}_{N_{eta}} & (s^{-1}) \end{array}$
AAEC	4πβ(PC)-γ	yes	0.48	23 - 63	30	CH4	0.1	8.8	9.15 18.2 1.145	(8) (1) (6)	7 000 75; 150; 0.6 65; 140; 0.45
AECL		no	1.18	12 - 27	12	17		7.3 - 7.6	1.935 1.916 0.698 3	(21) (20) (19)	12 900 630; 450 560; 410
BCMN		по	0.6 - 1.4	7 - 15	50	"	**	6.4	5.97 6.09 0.785	(6) (6) (16)	14 000 - 19 000 500 - 800 400 - 600
BIPM	'n	no	1.08	26 - 96	60			7.5	4.432 4.425 1.06	(10) (10) (1)	30 000 800 670
ETL	'n	no	1.00	9 - 19	30			7.5 - 8.0	4.35 2.11 0.688 7	(5) (5) (28)	7 000 150; 250 135; 225
IER	"	yes	1.0	20 - 70	50	"		9.6	3.201 3.196 1.075	(1) (1) (2)	16 800; 18 000 190; 293 168; 240
IFIN	"	no	0.64	5 - 11	100 - 150	"		12.8	10.0 10.0 1.090	(5) (5) (5)	8 000 150 120

* Between brackets: Uncertainty in units of the last digit

ω

.

Table	2	(cont	'd)
-------	---	-------	-----

Labora- tory	Method	Dilution	Mixing ratio (¹³⁷ Cs/ ¹³⁴ Cs	Sources Mass range (mg)	Backing mass (µg cm ⁻²)	β det Gas	ector Pressure (MPa)	γ detector resol. at 662 keV (%)	Dead times* $\tau_{\beta}^{\tau_{\beta}}$ (µs) $\tau_{c}^{\tau_{c}}$	Typical count rates $\begin{array}{c} {}^{N_{eta}}_{N_{eta}} & (s^{-1}) \\ {}^{N_{eta}}_{N_{eta}} & (s^{-1}) \end{array}$
IMRI	4πβ(PC)-γ	no	1.36; 0.55	15 – 27	40	CH4	0.1	0.3 [Ge(Li)]	5 ** 5 ** ≈ 1	14 000 40 36
NAC	4πβ(LS)-γ	"	· _	-	-	_	-	9. 5	1.15(2)1.19(3)0.513(1)	32 600 197 161
NBS	4πβ(PFC)-γ AC	yes	1.5; 0.67	21 - 34	30	Ar/CH4	1.48	7.1	4.3 10.0 (2) -	6 000 155; 170 14 - 30
NIM	4πβ(PC)-γ 1		1.09; 1.03	7 - 13	20	CH4	0.1	8	5.98 (1);21.901 (1)	8 000; 11 695
	"2 4πβ(LS)	" no	0.9 	10 - 15 10 - 15	20 -	-	-	7.8	1.52 (1);21.869 (1) 1.525(6); 1.2728(1)	90; 328 80; 226
NPL	4πβ(PC)-γ	yes	1.0	14 - 15	30	Ar/CH4	0.1	8.3	1.54 (1);18.70 (5)	15 000; 4 300
	4πβ(LS)-γ	"	1.01	15 - 30	-	-		9 . 8	2.80(50); 3.27 (4) 0.591(5); 0.300 (5)	2 200; 75 1 600; 65
NRC	4πβ(PPC)-γ AC	no	0.95	13 - 16	40	Ar/CH4	1.14	8.4	5.08 (5)	55; 17
									2.00 (2) 	0.5

* Between brackets: Uncertainty in units of the last digit ** Cumulative dead time, common to both channels

Labora- tory	Method	Dilution	Mixing ratio ¹³⁷ Cs/ ¹³⁴ Cs	Sources Mass range (mg)	Backing mass (µg cm ⁻²)	β det Gas	ector Pressure (MPa)	γ detector resol. at 662 keV (%)	Dead tir ^τ β ^τ γ () τ _c	nes* ks)	Typical count rates $\begin{array}{c} N_{\beta} \\ N_{\gamma} \\ N_{\gamma} \end{array}$ (s ⁻¹) $\begin{array}{c} N_{c} \end{array}$
OMH	4πβ(PC)–γ	no	0.5 1	3 - 16	30	CH4	0.1	8.2	3.067 3.021 1.022	(5) (5) (10)	11 500; 10 500 350; 230 290; 200
PDS	Ge(Li)γ	-	_	-	-	-	-	-			- · -
PTB	4πβ(PC)-γ 4πβ(PPC)-γ 1 4πβ(PPC)-γ 2	no	0.97 "	5 – 60 "	60 " "	CH4 Ar/CH4 "	0.1 1.1 1.1	6.6 6.6 8.9	5.06 4.73 1.01	(5) (5) (2)	7 700; 6 600; 7 000 170; 103; 650 160; 75; 550
SCK	4πβ(PC)γ 4π(NaI)γ	yes "	0.85	4.5 - 9.5 7.5 - 11.3	50 -	CH ₄ "	0.1 -	8.8 7.5	2.48 2.46 1.014 3	(1) (1) (3)	8 300 - 295; 4 000 251 -
UVVVR	4πβ(PC)γ	yes	0.55	9 - 18	45	CH4	0.1	7.3	5.724 5.710 0.992	(3) (3) (4)	5 840 486 387

Table 2 (cont'd)

* Between brackets: Uncertainty in units of the last digit

•

S

9

Table 3

Labora-	Measured by i	onization chamber	Efficiency tracing				Range of ϵ_{β}	Polyn.	Radioactivity	
tory	Adsorption* (Bq)	Activity concentr. 1982-05-01 (Bq mg ⁻¹)	β detector	γ-channel window (keV)	Data number	points time per point (s)	(%)	order	(%)	concentration with combined uncertainty 1982-05-01 (Bq mg ⁻¹)
AAEC	780	603 ± 12	FC	795 - 900 755 - 1 445 1 250 - 1 500	50 20 10	1 700 1 200 4 000	95 - 85 94 - 83 86 - 68	1 1 1	0.1	608 . 8 ± 2.6
AECL	790	607 . 1 ± 1.0	PC	740 - 1 510 740 - 900	168 202	1 000 1 000	91 - 78 93 - 81	1 1	0.1	605•4 ± 2•4
BCMN	900	-	PC	> 750 > 740	≈ 130	1 000	93 - 69	1	0.11	604.5 ± 1.8
BIPM	7 430 **	604 . 9 ± 0 . 4	PC	700 - 900	51	7 000	91 - 80	2 2	0.3	606.7 ± 2.7
ETL	-	-	< PC -₹	760 - 9 30 760 - 1 500	34 28	2 100 2 100	94 - 80 92 - 77	2 2	0.25	607.0 ± 2.3
IER	612	-	PC	785 - 890 785 - 1 600	600 580	100 100	94 - 78 90 - 75	1 1	0.1	595.1 ± 2.8
IFIN	0.08	-	PC	750 - 980	49	1 000	91 - 64	1	0.54	620.0 ± 2.9
IMRI	-	604.2	PC	760 - 820	22	3 000	94 - 76	1	0.11	604.3 ± 1.3
NAC	390	603	LS	> 950	11	1 000	83 - 72	2	8.0	600•5 ± 5•2
NBS	535	603.3	PPC, AC	755 - 870 > 890	≈ 60	3 000	92 - 75	1 1	0.54	605 . 9 ± 1 . 9
NIM	_	596.8 ± 1.8	PC 1 PC 2 LS	740 867 769 952 -	190 70 -	900 900	97 - 80 95 - 80 -	1 1 (2) 1 (2)	0.4 0.29 5.6	599.2 ± 1.6 597.4 ± 1.1 593.1 ± 1.2

* Activity remaining in the "empty" ampoule after two rinsings ** Rinsings took place later, when the residue was dry

6

Labora-	Measured by i	onization chamber	Efficiency tracing				Range of ε_{β} Polyn. $\varepsilon_{\beta\gamma}$			Radioactivity
tory	Adsorption* (Bq)	Activity concentr. 1982-05-01 (Bq mg ⁻¹)	β detector	γ-channel window (keV)	Data number	points time per point (s)	(%)	order	(%)	concentration with combined uncertainty 1982-05-01 (Bq mg ⁻¹)
NPL	1 100	593.7	PC	745 - 905	34	1 000	83 - 70	2	0.32	601.5 ± 11.4
			LS	> 745 770 - 920 1 230 - 1 630 1 850 - 2 200	28 350	2 000	78 - 63 92 - 77 89 - 68 76 - 35	2 2 2 2	7.0	598.8 ± 4.5
NRC	500	-	PPC, AC	780 - 810 1 250 - 1 510	240	700–2 000	91 - 73 82 - 60	1 1	0.32	609.30 ± 0.97
OMH	580	601.8	PC t	750 - 1 500	23 14	1 000 1 500	94 - 74 93 - 74	2 2	0.1	606.4 ± 1.0
PDS	-	-	Ğe(Li)γ	?	_	-	-	-	-	616.6 ± 5.9
PTB	500	605.09	PC PPC PPC	750 880 760 900 1 250 1 600	59 40 ≈ 60	10 000 2 400 1 600	93 - 65 90 - 70 88 - 76	4 *** 4 4	0.11 0.25 0.25	600.9 ± 2.2 605.8 ± 2.2 605.6 ± 2.0
SCK	357		PC	745 – 930 "	54 17 6	5 ×1 000 "	94 - 82 90 - 81 92 - 80	1 1 1	0.25	604.8 ± 1.2
			4π(NaI)γ	> (70 - 160)	100	2 000	-	-	-	604.6 ± 2.7
UVVVR	220	-	PC	> 715	56	400	91 - 63	2	0.32	596.6 ± 1.6

Table 3 (cont'd)

* Activity remaining in the "empty" ampoule after two rinsings *** a = a = 0 2 3

6

Z

	X	У
AAEC	1 - ε _β	$(1/m) \left(\frac{N_{\beta}}{1 - \tau_{\beta} N_{\beta}} - B_{\beta} \right)$
AECL	$(1 - \varepsilon_{\beta})/\varepsilon_{\beta}$	(n _β n _γ)/n _c
BCMN	$1 - N_c/N_{\gamma}$	Ν _β
BIPM	1 - ε _β	N_{β}^{tot}
ETL	$\frac{1 - N_c/N_{\gamma}}{N_c/N_{\gamma}}$	M _β N _γ mN _c
IER		$(1/m) \left(\frac{N_{\beta} N_{\gamma}}{N_{c}} - A_{134}\right)$
IFIN	$1 - N_c/N_{\gamma}$	N _β /m
LMRI	$(1 - \varepsilon_{\beta})/\varepsilon_{\beta}$?
NAC	N _γ /N _c	$N_{\beta}N_{\gamma}/N_{c}$
NBS	$(1 - \varepsilon)/\varepsilon; \varepsilon = (1 - Y)/N_{\gamma}$	$N_{\beta}/(1 - \epsilon)$
NIM	$(1 - \varepsilon_{\beta})/\varepsilon_{\beta}; 1 - \varepsilon_{\beta}; I_{o}/I_{n}^{*}$	$N_{\beta}N_{\gamma}/N_{c}$; $(N_{\beta} - \epsilon_{\beta} A_{134})(1/m)$; N
NPL	$1 - N / N c \gamma$	$N_{\beta} - A_{134} f(N_c/N_{\gamma})$
NRC	Y/N _Y	N_{β}^{tot}
OMH	$\frac{1 - N_c/N_{\gamma}}{N_c/N_{\gamma}}$	$\frac{N_{\beta} N_{\gamma}}{m N_{c}}$
PDS		
PTB	$1 - \varepsilon; 1 - N_c/N_{\gamma}; \frac{1 - N_c/N_{\gamma}}{N_c/N_{\gamma}}$	Ν _β /m
SCK	$1 - N_c/N_{\gamma}$	N_{β}^{tot}/m
UVVVR	$(1 - \varepsilon_{\beta})/\varepsilon_{\beta}; 1 - \varepsilon_{\beta}$	N _β N _γ /N _c ; N _β /m
* I _n =	anode current with optical filter,	I _o = current without filter

Table 4 - Variables of the efficiency functions used

Ì

6

.