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Dead times of the extended (or paralyzable) type, where every incoming pulse, 
no matter whether counted or not, is followed by a ti me interval of length "C 
in which no further registration is possible, are not very popular. This may be 
due to the fact that they always give rise to larger losses than would result 
from the same dead times of the non-extended type. This is directly connected 
with their cumulative character, which can give rise to very long periods 
of total paralysis. Furthermore, their statistical behaviour is in general much 
more difficult to handle mathematically. Whenever there is a choice between 
these two types, therefore, as is the case, for exampl e, when a dead time is 
inserted electronically into a series of pulses, the simpler non-extended type 
with the smaller correction would probably be preferred. 

However, the type of dead time may be imposed by the physical nature of 
certain parts in the electronics. In particular, automatic pile-up-suppression, 
as it is commonly used today in window-amplifiers for Ge(li) detectors, imposes 
a dead time which is, to a very good approximation, of the extended type. 
This can give rise to some serious problems [1] • 

In order to be able to deal with such cases, a good knowledge of the interval 
distributions which correspond to extended dead times is indispensable. Such 
problems, as a rule r2] , can be considered as special cases of the theory of 
renewal processes which in turn are fully described by the probability density 
of the time interval between successive events. 

A most instructive way to find the interval density (or its Laplace transform) 
,for the special, but very important case where the original sequence of events 
forms a Poisson process has been described by Feller [2J. *) This process is 
known to have some very particular features. Especially noteworthy among 
them is the independence of the expected interval from the time elapsed since 
the last event. As a result of this complete IIlack of memoryll, the time origin 
in a Poisson process can be chosen at will. This property, which is unique for 
the Poisson process, has been essentially used in Feller's elegant derivation. 
It is not evident, however, whether the reasoning along his lines can be 
general ized to permit other appl ications. 

*) His reasoning may also be found in [3J ' partly with the same misprints 
in the formulae, where a more general type for the dead time is also treated. 
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An attempt will be made here to arrive at an expression which allows the 
calculation of interval densities after imposing an extended dead time 
(see fig. 1). Our problem thus consists of finding the resulting interval 
density 2 f(t). 

> 
extended 
dead time 

t' 

Fig, 1 ~ I\.!otation for the interval densities 

VI/e denote by 

1 f(t)" the interval density in the original renewal process, and by 

> 

2f(t) the interval density in the process resulting after insertion of an 
extended dead time L . 

For both sequences which are ~ as a result of the independence of the 
successive events - of "the renewal type, we may write for the density of 
a k~fold interval 

\(.) = {f(·)rk 
, 

and for the tota I density 

'...'x) 

D(t) = 2: fk(t) 
k=l 

k = I, 2, .. ,' 

We now assume that at the time t = ° a pulse has been registered. Let us 
determine the interval density to the next event. 

According to the definition of an extended dead time, the occurrence of 

(1) 

(2 ) 

any output pulse for t > L requires two conditions to be fulfilled simultaneously, 
namely 

- that there has been an original pulse at time t , and 

~ that there has been no original pulse within the preceding interval 
from t~ l to t, otherwise t would have been overlapped by its 
dead time. 

Because t-l: cannot be negative, we replace it by the new quantity 

which assures, since t >01 that the whole interval considered is after t=O. 
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This now leads us directly to the fundamental equation 

where 

l
w (t r t) is the probability that there is no pulse in the original sequence 

o 0 -
between t and t, when an event has occurred at t = 0, and 

o 

U(t ) = {D 
o . 1 

for t < 0 o 
11 t ). 0 

o 

is the unit step function. 

Since we know in advance that 2fk(t) will vanish for t<::'t , and therefore 

qlso 2D(t) , it is in general sufficient to consider the region t) t , where 

t =t-T . 
o 

(3) 

The desired density 2 f(t) can only be extracted in a simple way from (3) if 

l w (t , t) is independent of t, which in general is not the case. The explicit 
o 0 

calculation of 1 Wo will be discussed in the next chapter. 

The problem of determining 2f(t) is particularly simple for the important 

special case where the original sequence forms a Poisson process. We then 
have 

, 

and thus 

, 

therefore 

- pt ~ (Pt)k 
= U(t)· p . e· • L -k!" = U(t)· 9. 

k=O 

(4) 

(5) 

(6) 

Since the time origin can be arbitrarily chosen in this case, we get for t >T 

1
w (t , t) = 1W (t-L, t) = 1W (0, 't) = e-

pt 
o 0 0 0 

According to (3), the total output density for an original Poisson process is 
therefore with (6) and (7) 

_ pc 
2D(t) = U(t-'t)· p. e 

(7) 

.. (8) 

But for the transformed total densities (2), the following relation always holds 
... ,'. .' 

'O(s) = '~ ~(s) = ~ rk(s) = f{~ 
k=l k=1 1 - f(s) 

, (9) 
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from which we conclude that 

f(s) = _~(st_ 
f'V 

1 + D (s) 

But since for a Poisson process, according to (8); we have 

D (s) = f_ . e - (s + P ) 1,; 
2 s I 

the transform of the desired output density is now determined from (10) as 

f ~ 
f(s) = ----- = ____ L __ _ 

2 P + r/
2
D(s) P + s • e(s+(J)'t • 

(10) 

(11) 

T his is i de n ti ca I wit h the res u I t de ri ve d by Fell er ([2 ] I e q. 43) 0 n the b a si s 
of his considerations concerning the total length of the effective dead times 
resulting from their cumulative nature. 

For the general case, the probabil ity for no event in the interval under study 
is a bit harder to determine. In close analogy with the considerations discussed 
earlier in the context of non-extended dead times [4J r we assume that exactly 
k pulses of the original series have arrived in the interval from 0 to t~ L: 
(see fi g. 2). 

r 1 f~ (t') 
------

tk tk+ 1 
~ __________ ~ __________ L-____________ -+ ________________ ~ t' 

I 
/ 

/ 

/ 
I 

" / 

" ,,-
,,-

-" .... 

t 1 
I 
1 I » 

t ' t 
~'---------t-+I ------+----t----~ 

o 
(t-'C) 

t' 

time 

Fig. 2 - Schematic representation of the densities needed for derivin~\ J;W 0 

The probability density for the first pulse arriving after pulse numb'er k is then 
given by 
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ex:, 

Pk(I') ~ J /~(O() 0 ;f1(1' -o() de( '" /~(t'). ;f1(1') , 

o 

, 
where 1fk(t') = U( t: -t') . lfk(t') and 

;f1 (t') = U(t' -[r -t k]) • 1 f1 (t') 

with t as defined in (3). 
o 

Thus (12) may be written as 

t 

Pk(t') ~ JO 1fk(O() 0 1f1(1' -o<J do( 

o 

, for t' :> t 
o 

I 

I 

and the probability for finding this pulse within the interval (t ,t) is given by 
o 

t 

= ( Pk(t') dt' • 
.) 

t 
o 

Therefore, the required probability for no event within (t ,t) is finally 
obtained as 0 

l\n easy check for formula (15) is provided by the Poisson process. In this 
case, we expect 1 W to depend only on the length ?;()'f'the interval, 
but not on its positio~ t (provided that t ') "'C). 

We now have 

and with (13) therefore 
t 

Pk(I') ~ [0 ( yo()k-1 

(k-l) ! 
o 

= 
r k+ 1 • e - pt I 
--(k-l}'!--

- Pt • e , 

- Po< • e 

t 
f{ pt )k 

cX k - 1 d CA 0 ---kT-· - f't' • e 
'.'.: 

o 

of 
o 

(12 ) 

(13 ) 

(14) 

( 15) 
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This yields with (14), for the conditional probability that pulse k+l: arrives 
within (t ,t) 

o 
t ? (~to)k 

---IZ-!- e \ dt ' . J -Ot' 

t 
o 

(Ot)k _nt 
= \ 0 • (e Y 0 ~ 0 t --k"!- ~e \) , 

and accordingly the probability for any pulse in (t it) is given by 
k 0 

-pt CX) (Dt) 
o - rt ~ r 0 = (e ~ e ) 2 --IZ"!-

k=O 

. = 1 

For a Poisson process l the required probability for no event within (t ,t) 
is thus given according to (15) by the relation 0 

- ~ (t=t ) 

1 
W (t ,t) = e 0 

o 0 
I 

r t for 0 < t Z L 
t - t = 1 ~ 

o Ll 
where !l t ) 1::' • 

As we expected, (16) is for t > 'C equal to the probabil ity that there is no 
event in the time interval from 0 to L in a Poisson process. 

4. interval densities for an original Poisson process 

(16) 

The aim of this chapter is to arrive at explicit formulae for the single and the 
multiple interval densities for the special case where the original process has 
been of the Poisson type. From a practical point of view, this is the most 
important application. The problem essentially consists of finding the originals 
of some Laplace transforms. 

Since we shall always deal with the resulting distribution, the index "211 will 
now be dropped. 

. .... .,...1 

a) Single intervals - The transform f(s) of the interval density, which results 
wh;~;P~i-;so~p-;;cess with rate iJ has been modified by the insertion of an 
extended dead time re I has been 'found earlier to be given by 

""V 

f(s) 

,-.' 

In order to find the corresponding original f(t), we now interpret f(s) as the 
sum of an infinite geometric series j i.e. 
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f(s) = x 
o 

= 
x 

o 
-1 .:-;-

7 

A comparison with (11') leads to 

and 

x = 

x 
o 

-(O+s) 1:: . e \ 

- x , 

which permits us to write now 

r--J 
vD 

xi f(s) = - 2 
1=1 

first ' 
Let us/determine the original corresponding to a single term xl in (19): 

Since 

~ t l-1 - 1 ! 1 C£ ) -"7-. = U(t) . rl:-f)T , 
l, s! 

fo r i = 1 f 2 Q ••• , 

the shift rule 

~v~l ("-f(s)·' e~ D(s} -_ (}.. { U(t- OI.} • f(t- 0;) 
t , fo r 0(.1-- 0, 

leads to the relation 

..JJ-1 t· 'I) ~ - rc " . (t_j
r

C)l-l 
A.. x

J 

> = U (t- 'I l-) • (- L\: • e ) --( - (J.:r) !-

This gives for the original density with (19) 

f(t) = 0... ..L x l ( = - 2: U(t-jL:) , (-~). e- )1. !..:1 __ _ _ -f -1 .~( 'or."_~.~ . ) pc . ( 't) 1-1 
, J= 1 ~ i (j -1) ! 

D<:) (_T.)i- 1 

= ? 2 U (T.) • __ I -- • e - i P C 
j=1 I (j-1)! ' 

where T. -- r (t = i I) , 
I 

The notation adopted here is as close as possibl e to that used previously" 
(e.g. in [5J), The step function U ensures that IL does not exceed t 
and thus in effect reduces the sum to a finite number of terms. 

(17) 

( 18) 

(19) 

(20) 

(21) 
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Let us briefly look at the behaviour of f(t). For the different time intervals, 
the contributions may be split up as follows 

fa) = 0 for 

D<1 
11 

c(1 + C( 11 

2 
ex 1 + 0(2 + D(3 11 

0( + 0( + 0( + 0(4 11 

1 2 3 

with (:<1 = )). exp( ~ pl) 

0(2 - _p2 . (t-2't) • exp (~2 ?T) 

0( 
3 

0(4 

= 

= 

~ p3 • (t_3L)2 . exp(-3Vc) 

= 1. F4 . (t_4l)3 • exp( -4 re) 
6 

0 !.. t .(.. ~ 
v -.... 2 ~c ( t <-...... 

2(: / t ~3l ...... 

3l .( t (4 G 

41:" ( t ~5l 

We therefore expect f(t) to be constant within the interval 't; < t :; 2 1: 
and to decrease linearly between 2 Land 3'l to a fraction 

1 - pc' exp( - eT) ~-' 1 - (t of its initial value. 

This theoretical shape of the interval density f(t) is very well confirmed by 
direct experimental measurements l as can be seen from fig. 30. 

b) Multiple intervals - As has been mentioned in chapter 2 already, the 
IIhi-;t-;;y"-ofthe-p-..;Zess prior to the last interval has no influence whatsoever 
on the occurrence of the later events. Therefore; the contributions to multiple 
intervals are independent, and the density for a k-fold interval is given by 
the k~fold self-convolution of f, as stated in (1). For the transform, this 
results in 

for k;) 1 I 

where f1 is identified with f. 

For our original Poisson process, this leads with (17) to 

.. 

f (5) = (_.:_~_)k 
k 1 - x 

(22) 

Using the relation (compare e.g. [6J ' p. 10) 

1 = 
(1_~k 

, for 
2 

x .( 1 F (23) 
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Fig. 3 - Experimental determination of interval densities 
for an extended dead time (for Y '" 2 000 s-l, -r - 400rs). 

The accentuated points lie at t = ft', 2-t;, 34t", 

a) Single interval density (measuring time 5 h) 

b) Double interval density (measuring time 12 h). 
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th is can be wri tten as 

.~ k~ (kF.I-l) k+j 
f k (s) = (-1) L I . x 

j=O 
(24) 

But according to (20), we have the correspondence 

1 \. k+' L G ~I _ p~k+' (t- [k+O T)k+i~ 1 

£- l 1\= U(t-L'<+~ 't) . (~ r . e ) I. (k+j-1) ! 

Tk+j-l 
k+' k+j -(k+J) Vc 

= U(T k+ l) . (-1) I • .? (k+j-1)I' e . (25) 

Therefore; (24) now turns out to be 

Finally F with the new summation index j 1 = k+j and by applying the well-known 
identity 

for the binomial coefficients; the density for the k-fold interval can also 
be written in the form (the prime in I1 is dropped again) 

J 
fk (t ) =.P . (- 1 / - 1 '" • ( j - 1 ) 

L k-l 
j=k 

(26) 

wherek=1,2,3, ••• , and J = -L; it/'C l l is the largest integer below t/c • .. .... .... 

For J <.. k, the density fk(t) should be taken as zero. It is easy to verify 

that k=l brings us back to (21). 

In particular, for the density of double intervals, (26) gives readily 

f2 (t) = (0 for 
i 

0 ::. t L 2 L. 

I ~2 11 2L. ( t ~ 3 T 

~ ~2 + ~3 11 3 T < t L~ 4 Y 

I ~2 + ~3 + ~ 4 
11 41 < t ~5T 

11 51: < t ~6T .~ ~2 + ~3 + ~ 4 + ~ 5 
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with ~2 = y2 . (t-2t) • exp (~2 re) 

~3 - - y3 • (t-3"C)2 • exp(=3 rt:) 

~ 4 = ~ ~4 (t_41:)3 exp( -4 rl) 

~5 = - * p5 • (t~5t:)4 • exp(-5 pt) 

This density also, which rises linearly in the interval 2l ~ tL 31":;15 well vedfie::l 
experimentally (fig. 3b). 

In general, the k-fold interval density (26) is described by a polynomial in t,. 

the degree of which depends on the range of t itself. In particular; for t:,e 
first time interval after the dead time of total length k"[ 1 i. e. in the range 
kL-<t ~ (k+1)'t , the probability density is given by 

k (t - k'1:, )k-1 =k 9-( 
fk(t) = ? . -(k=l)i--·e (27) 

If the interval chosen is characterized by the quantity J as defined above, 
the degree of the polynomial in this interval is determined by 

( 0 
G = ) l J-l 

for 
11 

J,( k 
J );r k 

5. Determination of the moments 

(28) 

In what follows, we shall restrict ourselves to determining the firsj· few mornr;nts, 
Nevertheless,. the method of calculating them by means of their transforms is 
quite general and moments of higher order may, if needed: be obtc:ined along 
the same lines. 

We realize,. of course,. that on the grounds on (1) it 'Nould be sufficient 
to determine the moments for a single interval, since their combination for 
mu I tipl e convol utions is wel! known. For chec ki ng purposes, however't 
we prefer to derive here the relevant expression;, directly for the multiple. 
intervals.*) 

As is well known, the ordinary moments m (t) of a random varilJbie teen be 
r 

obtained directly from the transformed density f(s) by diHer~~tiJti~llp sliice 

m (t) 
r 

. s=O 

(29) 

Instead of the sum (19)1 we derive from (22) another form which is eQulv0.le!1i"F 
but more useful for the present purpose" namely 

-:)~~~~:-~eaders who aroe~~ter.ested in a simple derivCltlon may alw0.}'5 a~sume 
k=l In what foi lows; avoiding thereby some or the more trouhle~'):'1e 
transformations. 
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; )k c>c -x k i 1 ~- ~i k 
= (-_) =\---- = (L x 1 

1 x 1 1 '-0 j' 
~ - I-

x 

(30) 

Inserting x g as defined by (18), leads to 

(3 J) 

1 PT 
where R -- P . e 

If we restrict ourselves to the moments up to order r=3, a power series expansion 

of (31) as far as s3 is sufficient. This first leads us to 
r-

~(s) =: L1 ~ Rs • (1 + s G + s2 r:? /2 + .. , ) 

+ (Rs)2 . (1 +2zl + , .. ) - (R:;)3. (1 + ... )-,k 
-J 

I
, 2 (.-.,.- ) 3 .' 2- ~2/) -I' k = _1 - s • R + s • R R - v - 5 'R !,R ~2 R L + C 2 +.~. J 

Applying the results (A5) derived in the Appendix with 

a 1 = - R 

a
2 = R . (R = L ) 

a') = - R . (R 2 _ 2R T + '1:.
2
/2) I 

v 

the transform can be reduced to the following power series in s: 

'--'" 2 k+ 1 ~ 
fk (s) = 1 - s -' kR + 5 • kR (2"- R = l. ) 

- 2 l 3 i (k-1) (k-2) 2 -', 2 ~ c) 
- 5 • kR L-6---- R + (k-1) R (R= C.) + (R ~2R L + -2 J 

From this and (29); we finally obtain for the moments 

m (t) 
0 

= 

m 1 (t) = k . R 

m
2 

(t) = kR • Fk+ l)R = 2~ 
- --' 

(32 ) 

m3 (t) = kR • l(k2
+3k+2)R

2 - 6(k+1)R-C + 3 L;2] 
L 
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For the central moments, this gives 

This result for the multiple intervals confirms tbat the central moments up to 
third order are additive for convolutions t as we would have expected 

- l (cf. e.g. L7J F p. 88). 

(33) 

A comparison with the corresponding interval distribution for a non-extended 
dead time is quite instructive. For an original .foisson process with rate f' ' 
the single interval distribution is known to be L 4] a simple shifted exponential 

~r-f (t )11 = U (t _ 1;) . P . e - e (t - r) 
non 

-' 

The respective results for some moments and combinations of them for the 
two types of dead times are collected in table 2. 

type o~ _ I m J I "'2 11 
~~~~~-~------r----------

u, ( 3 

(1 + PT) -2 

(34) 

4 non-extended I p + L I J/)'2 I 2/? 3 

I () ! (2 ...,... ,,2) I R R R -2 G ! R 2 R -6R v +3 v 

! ! 
extended 

(2R 2 -6R T~ +3 '[,2 )2 

--~(~ -2 'C) 3 

Table 2 - Comparison of some characteristic data of the interval distributions; 

with R = -~ exp (pc) 

It is interesting to note that although the first three moments given above are 
all larger in the extended than in the non-extended case, the opposite is true 

for the relative variance i-J.;2/m~ and for the skewness r.J.,~/ ~_L~. 8y el~me:ntary, 
but sometimes lengthy series expansions l the following results for the differences 
may be derived 

(m 1 ) ext (m 1) 
-J 

x
2
/2 r non 

(lL
2

)( . 
, ext 

(fh ) 
. 2 non 

rv x
3/(39 2

) 

(L(-'3)ext ( i·L 3 ) non 
r--J 4 3 

(35) .- ,x /(4)~ ) 

(PJ2/m~) ext -
2 r--.J 2 

(~2/ml)non - ~ x 

(~~/~~)ext - (~2 /~ 3) ,-0 - 4x 
3 

3 2 non 
, 

where only the first non-vanishing term in a series expansion for the dimensionless 
quantity x::: pi: is g·iven. ' . 
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In particular, of course, the expressions for m
1 

(t) also lead us to the well-known 
correction formulae for the cbunt rates. Since the output count rate r is 
given by 

r = 1/m 1 I 

we obtain 

~ for a non -extended dead time -C : 

r 
non 

- for an extended dead time l. : 

r = l/R = 9 . e - ? L 
ext 

APPENDIX 

\jI,'e consider the polynomial (k = 0, 1/ 2, ... ) 

2 0 k 
p (x) = (1 + a 1 x + a

2 
x + + a (I + ••• ) 

2 n = 1 +A
1
x+A

2
x + +Anx + 

The problem now consists of determining the coefficients A of the resulting 
n 

power series in x. In the reference manuals we have readily at hand here, 
no general expression of the form 

ft. = f(a l' a 2 , •• 0, a i k) 
, n n 

could be found, relating the new with the old coefficients a o I which are 
supposed to be known. I 

(3 0) 

(37) 

(A 1) 

Since the problem is seemingly of an elementary nature and may easily turn up 
again in other circumstances, we decided to determine explicit expressions 
for the first fsw coefficients A . 

n 

For this purpose, let us compare (A 1) with the general multinomial 

C': = (y 0 + Y 1 + Y 2 + ••• + Y m) k 

I (A2) 
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where the sum has to be extended over all combinations (r.) for which the 
condition I 

:>" r. = k 
-.- I 

I 

is satisfied and where the mu!tinomial coefficients are given by 

k 
r 
m 

By choosing especially 

y. = a .• xl 
I I 

T 

k! 
m 

,r---..' 
J I r. 
j=O I 

P{x) can be identified with Q and is then given by 

r. 

. Trail 
I 

I' r. 
)( I 

The coefficients in (An are obtained by collecting all combinations of r. 
_. I 

(subject to the condition 2.. r. = k) which lead to the same power of x. 
I 

The exponent of x is given by ..:> i' r. as can be seen from (A3). 
-- I 

This leads us to consider the combinations enumerated in table ft,l • 

(A3) 



rj 
!". 

f 
l< 

15 

k ~ jor ( r r1 r
2 r3 r

4 r5 

~ol 
0 . , r 0 r 1 

-t 

k 
I 

\ 
, 

! 
k= 1 

r 
k 

2 k-2 2 0 I k(k-1)/2 I I i I I k-1 0 k , 

I 

I 

3 k-3 3 0 0 i k(k-1)(k-2)/6 
k-2 1 1 0 I k(k= 1) I 
k-1 0 0 1 k 

.4 k-4 4 0 0 0 k(k-1) (k-2) (k-3)/24 
k-3 2 1 0 0 k(k-1) (k-2)/2 
k-2 0 1 0 k(k-1) 
k-2 0 2 0 0 k(k-1 )/2 
k-1 0 0 0 1 k 

5 k-5 5 0 0 0 0 k(k-1) (k-2) (k=3) (1<-4)/120 
k-4 3 1 0 0 0 k(k-1) (k-2) (k-3)/6 
k-3 2 0 1 0 0 k(k-1) (k-2)/2 
k-3 1 2 0 0 0 k(1<-1) (k=2)/2 
k·-2 1 0 0 1 0 k(k-1) 
k-2 0 1 0 0 k(k··l) 
k-l 0 0 0 0 1 k 

'Jo, ,. ;10. 

Toble 1-\1 - Possible combinations O{ r. which result in the some power of x 
in (1-\3).. together w!l"h t~,eicorre5pond:ng rnultinomiol coefficients 

By meons of table 1-\ 1 ond equotion (.43), the coefficients 1-\ are now eosily 
found by the sum 

n 

k 
r 

"/ ( \ 
r---' j 

(A4) A :::; . J La. I I r n GJ r 0 r 1 o 0 . ; I 
I 

i 

where 2 I 0 r. :::; n is conston"i", 
I 

The result for the first five coefficient:; is therefore 

A1 
:::; k' 0 1 I 

k 2 
,6, :::; (,.,)'0 +k"o I 2 .t~ 1 2 

k 3 k 
(A5) A" :::; (3)'0 1 + 2(2 )'° 102 + k'03 r 

.) 

k 4 k 2 k k 2 4 
A4 

:::; (4)"° 1 +3(3)'01 a 2 +2(2)'°1 0 3 + (2)0 0
2 + k'a ,. 

A5 
:::; 

k 5 k 3 ,k 2 k 2 
(5)'° 1 + 4(4)'0 1°2 + 3(3)'01 a 3 + 3(3)' a 1° 2 

k k 
+2(2)'a1°4 +2(2)"02°3 + k'a5 

A.:;implo la'iII kr the formotion of the coeHici-3nh dOG!: not appsar yet ond is 1n faci" 
ro~ very! ikelyj"i) exist ot cl! • 
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For multiple intervals (k>- 2), the question may arise of determining the 
position of the maximum value for fk (t). Unfortunately, the answer is not 
quite straightforward. 

Our main aim is to show in this section that thG maximum can never appear 
before the third time interval of width r:: after the end of the dead time. 
In other words, the maximum can only occur for t in the range 
(k+2) L ( t ~ (k+3)1: , or later. 

Let us consider the first interval after the dead time. The corresponding 
density fk(t) for th;k-fold interval has been given in (27). For determining 

the maximum, we consider its derivative 

I p k k-2 =k pG 
fk (t) = (k-if"! • (t - k 1:) • e • (A6) 

I .2 ( ~) h h i Whereas for k=2 we have fk = P . exp =2 r l ,w ic. is alwC1y~ positive; 

the cas e k > 2 y i e I d s fo r f ~ (t) = '0 the con d it ion t = k I . But t his is the 

beginning of the interval in question where f starts from zero. Therefore, 
no maximum Can possibly exist in this range. 

For the ~~co~~ interval; the density (26) is given by 

( 
. )k=1 (t~~lk+llL;)k) 

k t-k0' -kpL. k+1 _ -' . -,(k+1 f t 
fk (t) =? . -(k-=-f),-- . e ~ r . k • --k-!--- e 

This IGads to the derivative 

9k 
k -{' k2 k ;- ~ '. f'(t) = --_. e- )( (t-k't) - --' • (). (t-'Ik+l C)K-;, 

k (k-2)! k-1) __ 

with (k+1)l: <t «(k+2)(:. 
'-

For an extremum, the curly bracket must vanish. By putting 

re;. - )( and 

; 

where now 0 < y ~ x i 

we obtain rhe condition for an extremum in the form 

( '+ )k-2 _ k . k-l 
y x - -- Y 

k-1 

1 x k-2 
h(y) :;; - • (1 + -) = 

Y }' 
or 

-x • e 
i 

-x 
e 

We remark that h(y) is a monotonica!ly decreasing function of y. If we can 
prove that h(y) always exceeds the constant (k/k= 1) exp(-x), it is evident 

(AS) 
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that the equatio n (/\8) has no sol ution. I ndeed, for y=x we obtai n 

h(x) = 1. . 2k- 2 = _k_ 
x k-1 

or 
x k x 

e ="k=T' -1(':-2 i 2x 
2 

-x • e 

, for k). 2 , 

But this is not possible, since eX > 2x for any value of x, From this it follows 
that, even in the second interval after the dead time; there can never be 
a maximum for the interval density fk(t) • 

For the following intervals, the general analysis becomes much more involved, 
Therefore; we shall have to confine ourselves to some simple and rather 
incomplete results, although it is just in these regions that the maxima are 

".actually located, 

For the third interval, i. e. in the range (k+2) 1;< t ~ (k+3) 7: , the density 
for a k-foldinterval is given according to (26) by 

, e -(k+1) PT 

-(k+2))7'[ 
• e , 

which yields for the derivative 

c k 
I ) 

f (t) = ---- , -k \)L ( '"'~ k-~ ? . k ;- ~h'- k-1 - pT 
c - • < (t-k L ) - k~ , (t- Lk+ ~ v) • e k (k-2)! 

( 

9 2 
• (k+1) r ~ ~ k -2qt; + ------ • (t- I k+2 L) • e {(1-\8) 

2 (k-1) L .J' 

I ! I 

V'!ith the abbreviation p (t- Lk+~ T) = y and by putting fk(t) = 0, we arrive 

after some rearrangements at the following condition for the position of the 
extrema (for k ~ 2) 

k k-1 -x k-2 k+1 k -2)~ 

k-1 
• (y+x) • e - (y+2x) = ---' y 'e 

2 (k-1) 

Since for the interval considered, y is again bound by 0 < y {x ; 
a simple way of getting some insight into the solution may be to determine 
the values x for the limits y=O and y=x. .' 

For L= 0 we are led to 

or 
-x k-1 k-2 

x'e =-k'2 , 

but this question has ~~ solution for k ~ 2 • 

(;\ 9) 

(/\ 1 0) 
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For ~ x we obtain finally 

(x' e -x)2 = -~- G< . 2k- 1 
k+1 L 

-x • x • e 

For the special case k=2 I this leads with z = x 

z2 = ~ . (4z - 1) 
3 

-x 
e to the equation 

'Whereas the sol ution 2.387 does not correspond to any val ue of x and has 
therefore to be rejected, the value z = 0.2792 allows for the two solutions 
x ""-"0.429 and 1.937 j respectively. These two values indicate the limits 
for ft:' to ensure that the maximum of f2 (t) occurs i~ t~e range 41.: < t ~ 5 v . 
This is the case for our experiment (fig. 4) where J G = 0.8 
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