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Introduction: 
 
The BIPM is now basing its pressure calibrations on a DH Instruments pressure balance 
(Model PG7607) operating in the absolute mode. The piston-cylinder of this balance has a 
nominal diameter of 50 mm so that it is possible to calculate the effective area, A, at 20 °C 
based on dimensional measurements taken at that reference temperature. In our case, the 
diameters at several locations along the axis of both the piston and cylinder were calibrated by 
the Laboratoire National de Métrologie et d’Essais (LNE, France). In addition, the same 
laboratory kindly provided us with circularity measurements taken at several locations along 
the axis of the piston and the cylinder. References [1,2,3,4] describe the principles behind our 
calculation.  
 
The calculations proceed in three steps: 
 
1.  Determination of A0, the effective area of the piston-cylinder in the limit of negligible 

pressure gradient along the engagement length [1,4]; 
 
2.  Determination of AP to take account of gas flow in the absolute mode, when the 

measured pressure is near P0 = 1000 hPa [1,2,3,4]; and 
 
3. Uncertainty budget [2,3,4,7]. 
 
 
I. Determination of A0 
 
Our piston-cylinder is the type described by Dadson et al. [1] as “I(B) Simple, Inverted”. The 
equations describing this design are identical to the more usual “I(A) Simple, Upright” 
provided one places the origin of the vertical axis (z-axis) at the top of the engagement length, 
the positive z-axis extending downward. We use the following parameters, all of which are 
defined in [1]: 
 
r  : radius of the piston along the engagement length 
 
r0  : r(z=0) 
 
R : radius of the cylinder along the engagement length 
 
R0 : R(z=0) 
 
L : piston-cylinder engagement length, nominally 40 mm 
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P : pressure along the engagement length 
 
Additional parameters are defined from the above as 
 
u = r – r0 
 
U = R – R0  
 
h0 = R0 – r0 , nominally 0.000 8 mm 
 
h = R – r  
 
The final report of EUROMET Project 740 [4] gives a number of equivalent equations that 
may be used to determine A in the limit P(L) = P(0). A typical formula is that of the PTB, 
which is also given in [1] (Eq. 35): 
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This equation is easily transformed to the equation used by the LNE [4], where the only 
parameters that appear are r0, r, R and the limit of integration (L). 
 
Such equations are readily solved provided that the necessary functions of z can be written in 
analytical form as, for example, as a power series in z. Integrations were carried out 
numerically using the packaged software, Mathcad 13. 
 
We have only a limited number of measured diameters, supplied by the LNE, in order to 
obtain the needed interpolation formulae. Each reported diameter was determined along well-
defined x and y axes. The averages of these two measurements, when divided by two, give the 
radii shown in Table 1. In Section III, we discuss how well these average radii represent the 
radii of the corresponding least squares circles (LSCs) as determined from circularity 
measurements. 
 

z / mm r / mm R / mm 
40 24.983900 24.984534 
35 24.983928 24.984523 
20 24.983938 24.984488 
5 24.983948 24.984630 
0 24.983875 24.984678 

 
Table 1. Average values of r and R as a function of z, along the 40 mm engagement length. The top of the 
engagement length is at z = 0. Values in red are estimated by linear extrapolation of the two previous points [4]. 
 
Examples of fitting the data by regression are shown in Figures 1-4. For our limited data set, 
it was decided that interpolation by regression was preferable to the use of splines. 
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Figure 1. Third-order fit to r/mm as a function of z/mm 
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Figure 2. Second-order fit to R/mm as a function of z/mm 
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Figure 3. Second-order fit to h/mm as a function of z/mm. 
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Figure 4. Third-order fit to (U + u)/mm as a function of z/mm. 
 
 
As will be discussed below and in Section III, the results for A are reasonably insensitive to 
the analytical form of the fit. For example, using only the interpolation curves shown in 
Figures 1 and 2, we arrive at 
 

A0,1 = 1961.018 411 mm2, 
 

while, using r0 and R0 from Table 1 and the analytical forms of h and U+u shown in Figures 3 
and 4, we arrive at 

 
A0,2 = 1961.018 060 mm2, 

 
which is a relative difference in area of 0.2 × 10-6.  
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One might be suspicious of the first point in Figure 1. If one eliminates this point and fits the 
remaining points to a straight line (which of course extrapolates to a very different value of 
r(z=0)), the relative change in A0,1 is only 0.11 × 10-6.  
 
Finally, we mention that one participant in Project 740 [4] derived the effective area by 
averaging all radial data for the piston and cylinder. Although a conclusion of [4] is that this 
method gives results that are slightly different to those of the others used by participants, we 
have used the averaging method for completeness; but we have modified it to take account of 
our limited data set. Using the curves shown in Figs. 1 and 2, we have estimated the average 
radius by integrating the argument (R(z) + r(z))/(2L) over the engagement length , 0 < z < L.  
The result is 
 

A0,3 = 1961.019 161 mm2, 
 

which is in rather good agreement with the more complete analysis. This method is discussed 
in more detail in Appendix A. 
 
 
II. Calculation of effective area for operation in the absolute mode, P(L) = 0; P(0) = P0  
 
The calculations carried out in Section I are a useful start. We will return to them in 
Section III in order to analyze a number of uncertainty components.  However, we must now 
calculate AP, which takes account of nitrogen gas flowing in the gap of the piston-cylinder 
when the measured pressure is of order P0 and P(L) is vacuum—the so-called “absolute 
mode” of operation [1]. Note that the we are not calculating the small effect due to the elastic 
distortion of the piston when it is subjected to a gradient of 1000 hPa across its ends. This 
effect is treated as an additional coefficient which is supplied by the manufacturer. We 
assume, however, that correlations between P and h can be neglected in the range 0 < P ≤ 
1000 hPa. 
 
Although a formula which is said to apply to the absolute mode is derived in [1], Sutton [2,3] 
has pointed out that the derivation has not taken into account the fact that the gas flow in the 
gap begins in the viscous regime at z = 0 but ends in the molecular regime. The transition 
occurs when the Knudsen number is near unity [3,5], in which case the mean free path of the 
gas flowing in the gap between the piston and cylinder becomes comparable to the separation 
distance, h. 
 
Following Sutton’s derivation, we note that (1) is a special case of a more general formula 
which, for operation in the absolute mode, may be written as [1,3] 
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In [1], w and w0 are identically equal to ½, reflecting the fact that the neutral surface of a 
piston-cylinder operating under viscous flow is exactly at r + h/2. In Sutton’s development [2], 
w0 is ½ but w becomes less than ½ as the gas passes through the viscous/molecular transition 
and the neutral surface moves closer to the piston. For the dimensions of our piston-cylinder, 
the predicted effect is very small [2] and so we have set w = ½. In so doing, the expression 
within the parentheses in (3) becomes (u+U)/2 and thus (2) reduces to equation (23) of [1]. 
[This is the same as equation (25) of [1], derived for the type I(B) piston-cylinder, after an 
integration by parts.] To understand why the effect is so small under our conditions of 
operation, we can take the example of a perfect piston-cylinder with h = 0.000 8 mm. As a 
worst case, we assume that w takes its zero-pressure value at all pressures along engagement 
length so that the last term within the parentheses of (2) becomes 
 

1 2w h
r
− , 

 
which is preceded by a minus sign. 

 
From [2], we estimate 0.500 > w > 0.495 and thus the relative correction for molecular flow 
must be considerably less than 0.3 × 10-6 in magnitude. 
 
The pressure gradient in the vertical direction may be determined from the formula  
 

( ) ( )1 1
0 0 0 0

/
z L

P P P F dz F dz− −= − ∫ ∫ ,                                                 (4) 

 
where F is the flow conductance, for which a formula is given in [3] in terms of h and the 
inverse Knudsen number, f. The latter is itself a function of P and h. f becomes smaller than 
unity when the mean free path of the gas molecules (nitrogen in our case) becomes greater 
than h, the separation between the cylinder and piston. The inverse Knudsen number may be 
expressed as 
 

f = hP/cg.                                                                       (5) 
 

With h in mm and P in Pa, cg = 6.5 Pa mm for nitrogen at 20 °C [6].  
 
Equation (4) must be solved iteratively because F is itself a function of P. After several such 
iterations, the solution converges to the pressure profile shown in Figure 5. The convergence 
does not depend strongly on initial conditions. For example, the solution shown in Figure 5 
will be reached if the initial condition is P = P0 for 0 ≤ z ≤ L. 
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Figure 5. In black, second-order fit to P / Pa as a function of z /mm, as determined by (4). 
 

From (5), the Knudsen number becomes equal to unity at approximately P = 10 kPa. 
 
The result of this calculation is 
 

AP,1 = 1961.017 426 mm2. 
 

If we had simply assumed that the gas pressure follows the relation P = P0(1 – z/L)1/2 [2]1, this 
result would have been increased by 0.2 × 10-6 AP,1.  

 
By contrast, Eq. (37) of [1], derived for viscous flow throughout the engagement length, gives 
 

AP,2 = 1961.015 799 mm2 
 

(but see discussion in III.E). The relative differences of A0,1, A0,2, A0,3 and AP,2 with respect to 
AP,1 are  0.50 × 10-6, 0.03 × 10-6, 0.88 × 10-6 and -0.83 × 10-6,  respectively. 
 
We will take AP,1 as the effective area of our piston-cylinder. 
 
 
III. Uncertainty 
 
The uncertainty of AP,1 has a number of components that must be considered:  A) non-
circularity of the piston-cylinder, B) uncertainty of the calibrated diameters, C) sensitivity of 
the result to engagement length, D) inadequacies of the interpolation formulae used for 
                                                 
1 This is a special case of eq. (32) of Dadson et al. [1], when h(z) is constant over the engagement length. 
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numerical integration, E) inadequacy of the formulae themselves. For all but E), it is 
convenient to propagate uncertainties through (1). Note that the integration terms (the third 
terms within the parentheses of (1) and (2)) introduce only small relative corrections,  about 
4 × 10-6 in magnitude, to the effective area. 
 
 
A. Non-circularity 
 
Non-circularity of the piston-cylinder may have introduced a bias error into our estimates of 
the average radii. Specifically, we introduce an error when the average of the two orthogonal 
diameters measured for each cross-section does not equal the diameter of the least-squares 
circle (LSC) determined from circularity measurements [3]. For the calculations discussed 
here, the worst case occurs at the vacuum end, z = 40 mm, for both the piston and the cylinder. 
The bias errors on the average radius are -20 nm and + 8 nm respectively, although this is 
consistent with the uncertainty of the calculation (see Section III.B). The starting data were 
nevertheless adjusted to eliminate the calculated biases of the points and the interpolation 
curves for r(z) and R(z) were recalculated. The relative change in effective area was less than 
0.1 × 10-6. 
 
The circularity data (which do not constitute a calibration by the LNE) should be consistent 
with the difference in diameters that were measured along the x and y axes. If ∆i is the 
difference in diameters as determined from the circularity chart of the ith section and δi is the 
corresponding estimate based on direct measurement of the two diameters, then the standard 
deviation of the six (∆ - δ)i is 62 nm. The mean is +20 nm, with 25 nm standard deviation. 
Therefore, there is no statistical bias between these two methods of determining the diameter 
difference. However, we suspect that the two diameter measurements are highly correlated. 
Therefore, it is difficult to explain the large standard deviation observed in the difference of 
differences. We add a component of (62 nm/21/2)/r0  (ur 1.8 × 10-6 ) to take account of possible 
circularity errors. 
 
 
B. Calibration uncertainty of dimensional metrology 
 
The LNE calibration certificate states that the expanded uncertainty (k=2) of each reported 
diameter measurement is 0.08 µm. We assume that the diameters measured at two orthogonal 
diameters are highly correlated so that the average value of r and the average value of R 
measured for each cross section each have standard uncertainties u(r) and u(R) (k=1) of 
0.02 µm. Furthermore, we also assume perfect correlation between measurements of r and R. 
 
It is then possible to carry out an uncertainty analysis using the LNE formulae given in [4]. 
The result, expressed as a relative standard uncertainty, is virtually identical to that obtained 
from the simple formula 
 

r
0

( ) ( )u r u Ru
r
+

=    ,                                                       (6) 

from which ur = 1.6 × 10-6. 
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C. Changes in the engagement length 
 
The effective area was recalculated for an engagement length of 36 mm instead of 40 mm and 
the resulting change is negligible. 
 
The effective area was recalculated for an engagement length of 40 mm but where centre of 
the cylinder is displaced from z = 20 mm to z = 16 mm, the centre of the piston remaining at 
z = 20 mm. Again, the resulting change is negligible. 
 
 
D. Interpolation formulae used for numerical integrations 
 
It is difficult to assess this component of the uncertainty. At the end of Section I, we have 
already remarked that the interpolation formula for h can be changed from 3rd order in z to 
linear in z (also eliminating the datum at z = 0) with negligible effect. We have also fit a 
quadratic curve to the U+u data shown in Fig. 4 and this changes results by about 0.2 × 10-6. 
 
It is clear that the interpolation formulae are not perfect. This is seen from the difference in 
the calculation results A0,1 and A0,2. The formulas used to obtain these two results can easily 
be shown to be mathematically identical. Any discrepancy must be due to the fact that A0,1 is 
obtained using interpolation formulae for r and R, whereas A0,2 uses interpolation formulae for 
(U+u) and h, along with the dimensional measurements for r0 and h0. 
 
In addition, we have extrapolated the R data to obtain input values for the extremes of the 
engagement length. Due to the small number of calibration points along the engagement 
length, we think it prudent to add a component equal to the LNE calibration uncertainties of 
the data that we have, in order to allow for all interpolation (and extrapolation) effects. This 
amounts to ur = 1.6 × 10-6. 
 
 
E. The formula 
 
Sutton has estimated that his formula for F propagated a component of relative standard 
uncertainty of 0.8 × 10-6 in the effective area [3] (note that all uncertainties given in [3] are 
99% confidence limits, which we interpret as k = 3). It is difficult to assess the uncertainty for 
our own application, where the molecular flow region is confined to a relatively small fraction 
of the total engagement length.  
 
As noted above, AP,2 differs from AP,1 by approximately 0.8 × 10-6. To see how robust is this 
difference, we recalculated AP,2 after an integration by parts. The integral in question is [1] 
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and the expression in curly brackets is P(z)/P0. Before integrating (7) by parts, we calculated 
the power series representation of (U+u) in order to add the constraint (U(0)+u(0)) = 0. The 
integration by parts gives the same result for the integral to 0.01% (0.001 × 10-6 difference in 
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A). Integrations were carried out using the Romberg method. However, we remarked the 
following: while the value of AP,1 changed by less than 0.05 × 10-6 with the new fit to (U+u), 
the value of AP,2 increased by 0.65 × 10-6, effectively removing the small discrepancy that had 
been noted at the end of Section II.  
 
A pertinent article by Delajoud et al. [7] discusses the calibration of a three 50 mm diameter 
piston-cylinders manufactured by DHI but made of a ceramic material (our piston-cylinder 
No. 517 is made of tungsten carbide). Three different methods are reported in [7] to calculate 
the effective area of each piston-cylinder set, all relying on the same dimensional 
measurements carried out at the NIST. These methods are: simple averaging (as we used to 
calculate A0,3); (1) or its mathematical equivalent (as we used to calculate A0,1 and A0,2); and 
Eq. (37) of  Dadson et al. [1] (as we used to calculate AP,2). For all three piston-cylinders 
studied in [7], the most serious relative discrepancies are about 1 × 10-6. Note, however, that 
their results are tabulated to a relative precision of 0.5 × 10-6. In any case, our most serious 
discrepancy among these methods is about 1.7 × 10-6 (between A0,3 and AP,2). The three 
piston-cylinders were also calibrated in the gauge mode by cross floating against two different 
reference gauges traceable to NIST primary standards. Discrepancies for all six measurements 
with respect to the dimensional calculations ranged from -7 × 10-6 to +5 × 10-6, with three of 
three of the six results agreeing to within 2 × 10-6. We do not taken account of these 
discrepancies in our own uncertainty budget. 
 
To conclude this section, it seems to us prudent to assign a relative uncertainty of 1.5 × 10-6 
(type B) to the method used to obtain AP,1. 
 
 
F. Final uncertainty budget 
 
The final budget for the relative standard uncertainty of the effective piston area is given in 
Table 2 for AP,1 = 1961.017 426 mm2. Due to the reliance on calibration data and Type B 
estimates, the number of degrees of freedom is much greater than 10 and need not be 
calculated in detail. 
 

Component 
or effect 

Standard 
uncertainty 

Sensitivity factor for 
calculating relative 

standard uncertainty 

Relative standard 
uncertainty 

/ 10-6 

r 20 nm 1/r 0.8 
R 20 nm 1/r 0.8 

circularity   1.8 
engagement length   <0.1 

interpolation   1.6 
formula   1.5 

total   3.3 
Table 2. Final uncertainty budget for AP,1. Components are considered to be uncorrelated with the exception of r 
and R, which are assumed to be perfectly correlated. 
 
The analyses presented in [4] include the uncertainty of r0, which appears explicitly in (1). It 
can be shown that the sensitivity factor for r0 is h0/r2 [4]. This is so small compared to 1/r that  
consideration of u(r0) in our uncertainty budget is not needed. 
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Appendix A 
 
Comparing the technique of averaging radii with other methods 
 
In [4], it is concluded that the technique of averaging radial measurements of the piston and 
cylinder in order to arrive at an average radius gives results that are slightly different to those 
of the other methods studied. By contrast, the authors of [7] imply that the technique of 
averaging radial measurements is a) as successful as other, more complicated methods and b) 
that this technique gives a result that can be used for cases when P0 is close to the reference 
pressure and also when the difference in pressure is about one atmosphere. The explicit 
equation for averaging radii is given in [8]. 
 
Unfortunately, in none of these references is there any indication of how the method of simple 
averages compares analytically with other methods. In fact, such a comparison is relatively 
straightforward under reasonable assumptions. We present it here. 
 
 
i.  Method of averages 
 
From [8], the formula for the effective radius, re, of the piston-cylinder  may be inferred to be 
 

( )2 22
e

1
2

r R r= + ,                                                     (A.1) 

 
where 〈R〉 and 〈r〉 are the respective averages of the cylinder and piston data. 
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In the following, we will assume the existence of interpolation curves for R(z) and r(z) as 
described in Section I (see Figs. 1 and 2) so that the averages shown in (A.1) may be found by 
integration. One may then show that 
 

2
2

e 0

1 ( ( ) ( ))
2

L
r R z r z dz

L
⎛ ⎞= +⎜ ⎟
⎝ ⎠∫                                              (A.2) 

 
is the same as (A.1) to first order in h0/r0 if the set of (R, r) data is sufficiently dense. 
 
By making use of the identity 
 

0 0( ) ( ) ( ) ( )R z r z R r U z u z+ = + + + ,                                       (A.3) 
 

the effective area becomes  
 

2 2 0
e e 0 0

0 0

11 ( ( ) ( ))
LhA r r U z u z dz

r r L
⎛ ⎞
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⎝ ⎠

∫π π ,                            (A.3) 

 
again to first order in h0/r0.  
 
 
ii. Comparison with other methods 
 
One sees by inspection that (A.3) is identical to (1) under the condition that h(z) = h0, which 
implies that changes in R and r as a function of z are perfectly correlated.  
 
We now consider under what conditions (A.3) will equal (2), with w(z) = ½. Equality would 
be achieved if  
 

0PdP
dz L

= −                                                             (A.4) 

 
and this may in many cases be a reasonable enough approximation to the black curve in Fig. 5. 
When we recalculate (2) with a linear pressure dependence, given by (A.4), we indeed recover 
A0,3 to within 0.11 × 10-6.   
 
We conclude that (A.3), and its approximation based on discrete data, can give good 
agreement when compared to more elaborate schemes [4,7,8] under certain conditions.  
 

 
 
 
 


