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Abstract 

 
A median is a simple measure of location, sometimes applied as an alternative or complement 
to the more common, but less robust, mean value. We propose to form a quantity which, in 
the context of medians, can be used in place of the traditional covariance. This will make it 
possible to adapt the general rules valid for the propagation of uncertainties to medians. 

 
1. Introduction 
 
Whenever we have to deal with quantities that are not independent of each other and for 
which we want to estimate the uncertainties, covariances come into play. This is already the 
case for a simple sum of the form (a, b = constants) 
 

,z ax by= +       (1) 
 
where the random variables x and y depend (or may be suspected to depend) on each other or 
could undergo a common influence (perhaps with opposite signs). 
 
From repeated individual measurements of x and y it will be possible to obtain estimated 
values of their respective variance, say 
 

),(Var  ),Var( yx  
 

but the general expression for the variance of z is  
 

2 2Var( ) Var( ) Var( ) 2 Cov( , ),z a x b y ab x y= + +       (2) 
 

i.e. it also implies covariances. 
 
It is therefore necessary to have available an estimate of the covariance. This is independent 
of what we choose for the "best" value of the sum z. 
 
If we use mean values, then 

,z ax by= +      (3a) 
 

while for medians we would write 
 

.z ax by= +% %%      (3b) 
 

 
In both cases, the problem arises of knowing how the respective uncertainties (and 
covariances) for zz ~or  can be obtained. The answer will be of the form (2), but the 
estimates for the variances and covariances involved will be different. 
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As is well known [1], for mean values we have, for example, the relations (for a sample of 
size n) 
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 and 
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1

1Var( ) .
( -1)

n
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x x xin n =

= ∑ −                         (4b) 

 
If one prefers to use the median, for instance because of its greater robustness, then one can 
write, as it  has been shown previously [2], 
 

{ }med ,ix x≡%  
 

where  is the solution of the condition x~

min,=~-∑
1=

n

i
i xx              (5) 

 
 and 

{ }22Var( ) MAD( ) ,x C x=% %  
 

with    { }MAD( ) med -ix x x≡% %   and  2 3.5
-1n

≅C .      (6) 

 
 
 
2. Covariances 
 
For mean values, a possibility for estimating the covariances is given by the relation 
 

( )(
1

1Cov( , ) - - .
( -1)

n

i i
i

)x y x x
n n =

= ∑ y y    (7) 

 
For medians, the expression for the covariance must be similar. If we require that 
 

)~,~(Cov=)~,~(Cov yxabybxa  
 and 

Cov( , ) Cov( , ),x y y x=% % % %  
 

then essentially the only remaining possibility is (K = constant) 
 

Cov( , ) MAC( , ),x y K x y=% % % %  
 with 

{ }MAC( , ) med ( - )( - ) .i ix y x x y≡% % % %y     (8) 
 

 2



If we put K = C2 and since  { } { } 22med medx x =   , we also have, for x = y, the relation 

 
Cov( , ) Var( ),x x x=% % %  

 or 
2MAC( , ) MAD ( ),x x x=% % %  

as is similarly the case for mean values. 
 
Provided that reliable estimates of the statistical weights of the measured quantities are 
available, these can be readily incorporated [3]. In this case, (8) becomes 
 

{ },)~-)(~-(med=)~,~(MAC yyxxqpyx iiii    (9) 
 
where pi and qi are the weights of xi and yi , respectively. It does not matter if they are 
normalized or not since the solution, MAC, of 
 

( )( )- - - MAC mi i i i
i

p q x x y y =∑ % % in             (10) 

is the same*. 
 
With these basic formulae at hand, it is now possible to deal readily with all practical cases 
for the propagation of uncertainties. The numerical example given in the Appendix illustrates 
the procedure. 
 
 
3. Correlation coefficients 
 
The correlation coefficient, usually defined by 
 

Cov( , ) ,
Var( ) Var( )

x y
x y

ρ =     (11) 

 
is known to be limited by  We note that the corresponding form with medians, i.e. 2 1.ρ ≤

)~(MAD)~(MAD
)~,~(MAC

=
yx

yx
r ,    (12) 

is not necessarily within the range from –1 to + 1 since the Schwarz inequality 
 

2 2( ) ( ) ( )E xy E x E y≤ 2 ,

                                                          

    (13) 
on which the result for ρ relies, is no longer applicable. 
 
 
4. Conclusions 
 
A quantity, the median analogue to covariance (MAC), has been developed which, in the 
context of medians, can be used in place of the traditional covariance. This makes it possible 
to transform for medians, the general rules that are valid for the propagation of uncertainties. 
This enables medians to be used where traditionally means might have been used to analyze 
comparisons. 
 

 
* MAC is formed in line with MAD, with C now referring to covariance. 
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APPENDIX 
 
A numerical application 
 
The following example is taken from [4]. It concerns a sample of n = 10 pupils for whom 
height xi cm and weight yi kg have been measured. 
 
The original data are  
 

i xi yi  i xi yi 

1 135 29.3  6 137 32.3 
2 145 35.2  7 134 27.2 
3 139 34.5  8 144 36.7 
4 142 32.1  9 135 26.9 
5 137 33.6  10 146 38.3 

 
This readily yields 
 
     as well as 138, 32.95x y= =% %

 
 139.4, 32.61.x y= =  
 
From the products 
 

i )~-)(~-( yyxx ii         i )~-)(~-( yyxx ii  
1  10.95  6  0.65 
2  15.75  7  23.00 
3  1.55  8  22.50 
4  -3.40  9  18.15 
5  -0.65  10  42.80 

 
we see that   MAC( , ) 13.35.x y =% %

 
 
Since  

2 3.5MAD( ) 3.5, MAD( ) 2.95 and ,
9

x y C= =% % ≅  

we find 
2 2Var( ) MAD ( ) 4.76,x C x= ≅% %  

 
2 2Var( ) MAD ( ) 3.38y C y= ≅% %  

 and 
2Cov( , ) MAC( , ) 5.19.x y C x y= ≅% % % %  

This leads to 
Cov( , ) 1.29.

Var( ) Var( )
x yr

x y
= ≅

% %

% %
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These values may be compared with the results based on mean values, i.e.  
 

 Var( ) 2.03, Var( ) 1.48 and Cov( , ) 1.51,x y x y≅ ≅ ≅  
thus 

 ρ ≅ 0.87. 
 
The agreement is not very good; the values based on the median are larger. However, this 
could be the price to pay for the improved stability. 
 
Finally, another simple check may be appropriate. If we disregard the dimensions of x and y, 
they become two separate sequences of numbers on which mathematical operations can be 
applied. For the sums 

iii yxz +≡  
 

we readily obtain  
172 and MAD( ) 8,z z≅ ≅% %  

 thus 
2 2Var( ) MAD ( ) 25.z C z= =% %  

 
This result would coincide with the expected value 
 

Var( ) Var( ) 2Cov( , ) for MAC( , ) 21.x y x y x y+ + ≅% % % % % %  
 
However, since this is beyond our directly evaluated value (13.35), the latter can no longer be 
considered as too large. 
 
It is likely, therefore, that the experimental values obtained are within their normal scatter. 
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