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]. Introduction 

The distortion of an original Poisson process produced by insertion of 
a dead time is a subject which has been studied extensively and for a long 
time. It may be surprising, therefore, that we are still faced with unsolved 
problems in this field, some of which are of great practical importance. 

The question we try to answer in this report is a minor one and concerns 
a technical detail. The unexpected mathematical obstacle occurs when one 
tries to verify a limiting case which, for obvious physical reasons, must lead 
to a simple Poisson process. f 

The problem turned up recently when we were looking for approximate expres
sions for the modified distributions, and its solution was essential for proceeding 
further. 

If Wk(t) denotes the probability of observing k events within a time interval t 
for an original Poisson process with count rate p which is now distorted by 
a dead time 1; , we must obviously expect that 

where p" = p . t . 

= ~k . 
k! 

-~ e - Pp- (k) , 
<Ii 

As one usually distinguishes between three counting processes (depending on 

(1) 

the choice of the time origin) and two types of dead time, there are six different 
expressions for Wk(t) to be considered, and (1) should be valid for any of them. 
In most cases it is very easy to verify, starting from the exact expression of 
Wk(t) corresponding to a given experimental situation, that relation (1) indeed 
holds. However, there is one case where the derivation of this limit is not obvious, 
and it is this problem which we shall treat in what follows. 

Since the case of a non-extended dead time has been dealt' with earl ier and 
raises no problem for the verification of (1), we restrict ourselves to the situation 
with an extended dead time. As for the classification of the three counting 
processes considered, the necessary information can be found in earl ier publ i
cations ([lJ to [4J). 



2 

It is rather surprising to see that an exact* formula for Wk(t) was published 
as long ago as 1943 by Kosten [5J for the case of an extended dead time. 
In our usual notation it reads, for t > 0 and 0 < k < K + 1, 

-x j 
(T.

1
·e) , 

1-
(2) 

where K is the largest integer below t/"t', x = r'C and Ts = f (t - sli) = \At - sx. 

Three years later a new derivation of the same formula was given by Hole [6J . 

In 1951 a slightly different expression was published by Ramakrishnan [7J 
apparently for the same problem which reads, for O<k< K , 

K (_1)j-k 

Wk(t) = L k! (j-k)! 
j=k 

This result has also been obtained in quite a different context by Brockwell and 
Moyal [8J . 

t 
The difference between the two formulae, which was first rather mysterious, 
is now well understood and stems from alternative initial conditions (at t = 0) 

(3) 

to which the authors then (and others much later) paid little attention. In our 
present terminology (2) describes an equilibrium process, whereas (3) corresponds 
to an ordinary process, and they are related here by 

Wk(t) = Wk(t +'(;") • eq or 

This is a simple consequence of a surprising relation which exists between the 
corresponding interval densities first noted in 1974 (cf. [91, eq. 33). For 
a detailed discussion of the above two exoression~. for Wk(t) see now also Libert 
( [ 2 ] or [10]) . " f·,··,' 

For the expression given in (2) and (3) the Poisson limit is easy to achieve. 
Since for T -- 0 

K-- 00 , x--- 0 

we have obviously for both cases 

lim 
'L---

= 
p..k 
k! 

and T. --- \;.L 
1 

* Minor slips or misprints in this and other early formulae are here tacitly corrected. 
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2, The case of a 11 free counterll 

There remains the third type of process, called IIfree counter ll , to be 
described, It happens that for an extended dead time this situation leads to 
a much more complicated expression for Wk(t), Whereas the first two moments 
of k have been known for a long time, the probabi I ity distribution was first 
indicated in 1969 by an Ital ian group [11 ] ' It reads in our notation 

with 

-p. 
= e I 

K+l 
Wk(t) = (-ok:2 ('£'-1), R 

.e=k k-l i-

t-I (-Tn )i 
-/1- -(i-Ox"" .x--l 

e - e L 'I 
i=O I· 

An equivalent, but slightly simpler form is 

K 
W

k
+

1
(t) = (_Ok L (.i) , Q 

£=k kt, 

-Ix 1 (-Tt)1 
with Qn = - R/J+l = e L 'I 

-(.,.t; i=O I· 

for 1 ~ k ~ K+ 1 , 

for O~k~K 

-l-l' - e , 

The form of the lrobabil it~ distribution has been confirmed in a careful study 
by Libert (cf, L 12J ' or L 13J for more details), 

For later application it will also be useful to have available the following 
expl icit expressions for Q,e, : 

r:-. = 1 _ e-l-l-
\..>f0 ' 

Our problem now is to understand how (4) actually approaches a Poisson distri
bution for'G -- 0, as it should do according to (I), 

(4a) 

(4b) 
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In the limiting case 't = 0 we have 

1 (IL)j u_ 00 (_~)j 
Q =2 -01 -e-'-= -L: 01 

:e j=O I· j=.£.,+l I· 

which leads to the double sum 

_ (_1)k+ 1 00 i ! 00 

Wk+ 1(t) - k! ()~-k (,t-k)! 2: (5) 
-t. j=.£,+ 1 

It is still not easy to see from this form how the Poisson limit will eventually 
be reached 0 

Before treating the general case, it may be useful to look at a specific example 
and see how the necessary transformation can be accompl ished 0 Let us choose 
for instance the case k = 20 Then (5) gives 

(- (..L-) j 
01 
I· 

which we write in the form of a single sum over 

_1 00 A (-tqj 
W3 (t) - - -2 L 2 0 0 1 0 

j=3 1 I· 

Expl icitly, the first terms of the new sum are 

-for j=3: 

" i. = 4: 

" j = 5: 

3 
2 0 1 (- \:l') 

3! 

( ~)4 (-1:':)4,; 
2 0 1 - 4! + 3 0 2 4T' "! ,-.> , 

5' 5 5 
2 0 1 (-p-) +3 02 (-j-L) +4 03 (-p-) 

5! 5! 5! 

= A (_p')3 

2 3 3! 

= A (_p:)4 
2 4 4! 

= A (_/-l)5 
2 5 5! 

Hence, the "multiplicity" factor 2..A j is seen to be given by (for j >3) 

_.i;.1 -t! _ l:J 2 l:J 
A.-2 -2 1 -2$ 

2 j £=2 (1-2)! .t=1 .e=1 

-_ 0-1) 0 (2 0 1) 0-1) 0 - 1 0(0 1) (0 2) 
6 1 1- - 2 1 - 3" 1 1- 1- , 

n 
since .L:.e = ¥ (n+1) 

1.=1 
and 

n 2 2:1; = ~ (n+1) (2n+1) 0 
.1=1 

(6) 
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Therefore I we have for k = 2 the probabi I ity 

( )3 00 i 
W

3
(t) = ~ , 1',(',-1) (',-2) (- \;J.) 

2! ~ 3 j! 

= (_1)3 ~ (~~): = p;3 ~ (_~)j-3 
6 j=3 (,-3). 6 j=3 (j-3)! 

p.-3 
= - , e -I-L = Pu.,(3) I 

3! r-

as expected, 

The general ization for an arb itrary value k is straightforward, 

The multiplicity is now (for k ~O and j ~ k+ 1) 

i;J -l ! i;J k- 1 ~ k- 1 
~, = L (i-k) 1 = 2. 'TT (.£-s) =; 2. 11 (.£+s) • 

'i=k . £=k s=O ..e = 1 s=O 

According to Mangulis [14] there exists a general relation which can be put
f 

in the form 

n k-1
1 

k 

L 17 (£+s) = k+ 1 1T (n+s). 
-f.,=1 s=O s=O 

The general expression for the multiplicity is therefore 

1 k , 1 k , 
../l, = - TT (,-k+s) = -'TT (,.-s) 
K, k+ 1 s=O k+ 1 s=O 

We are now in a position to proceed further with (5) which can be written as 
(for k> 0)" ~,.,. " 

W (t) = 
k+1 

(_1)k+ 1 ~ A (-IL)j 

k l L k' 'I 
. j=k+1 ' ,. 

k 1 k j 
= (- 1) + . - ~ 1T (j -s) (-~ ) 

k! k+ 1 j=k+ 1 s=O ' . 

= (_1)k+1 (_p-')k+1 ~ (_/L)j-k-1 

(k+1)! j=k+1 (j-k-1)! 

= P' k+ 1 00 ( _ ~ ) j = f-L k+ 1 -tJ; = 

(k+ 1)! j~ j ! (k+ 1) • e 

(7) 

(8) 
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Since WO(t) = e-P- = P~(O), this result shows that there is indeed 

lim Wk(t) = Pp.-(k) , 
't--- 0 

when Wk(t) is given by (4). 

3. The ord i nary momen ts 

for any k > 0 , 

The first two moments of the probability distribution (4) have been first 
derived by Feller [15J by means of the now classical method of using Laplace 
transforms for renewal processes. The results for expectation and variance of k are 

-x -x = (p. - x) e + 1 - e 

-x = 1 + (p-- x-I) e , for t ~ 't (9) 

-x -x -x 2 -2x = e (~- x), (1 - 2xe ) - e + (1 + x) e 

= e - x (p- - 1 - x) + e - 2x [1 - 2x (!L - 1) + 3x 
2 

] for t >2'1: • 

These formulae have since beeuederived several times by various methods and 
were confirmed. Expressions are also known for the region 0 < t < 21;. t 

Foglio Para and Mandelli Bettoni [11J indicate an interesting form for the first 
moments which involves the quantities R,e (or Q1, in our notation), which were 
introduced above in (4). For the fi rst few ord i nary moments of k, defi ned by 

M (t) = E ~ kr~, they give 
r 

MO(t) = 1 , 

M 1 (t) = R2 - RI = Q - Q for t ~--r, (10) o 1 , 

~2(t) = 3 R2 - RI - 2 R3 = Q - 3Q + 2Q " t >217 • 
0- ~'"'" 1 " 2 

It is easy to verify that these expressions are compatible with (9). Unfortunately, 
no hint to the derivation of (10) is given other than the indication that they are 
obtained from (4) "after straightforward calculationsJl

• It was tempting to see 
how this could actually be achieved. 

Let us first check the normal ization. From (4) we have 

K+l K K 
MO(t) = ~ Wk(t) = e-P-+ Z (_1)k L (t) Q£ . 

k~ ~O l~ 

(11 ) 
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The first contributions to the sum are 

- for k = 0: + ~ (-5) Qt 
012 

= (0) QO + (0) Q 1 + (0) Q2 
+ ... , 

.l=O 
K 

1 2 - 11 k = 1 : -2: (t) Q = - ( 1 ) Q 1 - ( 1 ) Q2 -
£=1 1 :e. 

••• I 

11 k = 2: 
K £ 2 +2 (2)Q.t = + (2) Q

2 
+ .•. , 

£=2 

For K ~ 1 we therefore have 

.t . n .£ 
Since :2' (- 1) I (~) = (1 - 1) = 0, 

j=O I 
for t ~ 1 , there only remains 

MO(t) = e -11' + Q
O 

= 1 , 

which confirms the correct normalization of (4). 

For the ordinary moments of order r ~ 1 use of (4) yields 

K+1 K+1 K 
Mr(t) = 2 kr. Wk(t) = L k

r 
(_1)k+ 

1 L (k~l) Qi- . 
k=O k=l £=k-1 

The evaluation of th is expression can be performed in the following way. 
First let us look again at the various terms '-of the sum over k, the first few 
of which are 

K 
- for k = 1: + 1 r L ( £) Q = 

-e=o 0 .e 
K 

- 11 k = 2: - 2
r L (1.) Q = 
1=1 1 :e 

K 
11 k = 3: + 3r 2 (1) Q = 

1,=2 2 t 

r 0 r 1 r 2 
1 (0) Q

O 
+ 1 (0) Q 1 + 1 (0) Q

2 
+ ••• , 

_l(l)Q _l(2)Q _ 
1 1 1 2 ... , 

( 12) 

( 13) 
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Hence we get for the moments 

K .e . (j 

M (t) = L G;e L (-1)' f.) (j+ 1{ 
r .t=0 j=O , 

In order to proceed further with M we now consider the sum 
r 

i . 
Z(r,l) == 2: (-1)' (~) (j+1)r 

j=O , 

1, . (J r 
= 2: (-1)' (~) '5" (:) jm • 

j=O , m=O 

By using this quantity I the moments can be written as 

K 
M (t) = L Qo • Z(r/.e) • 

r ~ =0 -{; 

According to [16] I Stirl ing numbers of the second kind may be defined 
by the following expression (in our present notation) 

_ 1 ~ -i-j.£.m 
S(m , l) - 7!f L (-1) (.),' I 

-L! j=O ' 

which is equivalent to 

.£ . n i L (-1)' (~) jm = (-1) .£!. S(m,-e) • 

j=O ' 

It is therefore possible to write (14) in the form 
~J Pf," '-". "i 

However I since Stirling numbers have the characteristic that S(m,l) = 0 
whenever £ >m I we see also that 

Z(r,i,) = 0 for.e >m • 

This allows us to reduce the expression (15) for the moments to the form 

r 

M (t) = L Q o • Z(r ,t) . 
r .t=0.{,t . 

( 14) 

(15) 

( 16) 

( 17) 

( 18) 

(19) 
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By means of (18) we now find with (14), always for r ~ 1, 

r r 
M (t) = L a.e (-1)'£ £! L (r). S(m,£) . 

r ..e=0 m=£' m 
(20) 

This expression can be greatl~ simplified. For this purpose we use a recurrence 
relation for Stir! ing numbers [16J which can be written as (d is a dummy integer) 

r-d 
(~)S(r,£) = L (:)S(r-m,d).S(m,.e-d) • (21) 

m=l-d 

For d = 1 we get, since S(m,1) = 1, 

r-l 
(f)S(r,£) = L (:).S(m,t-1), 

m=£-l 

or likewise, with £+1 instead ofL, 

1+ 1 0 r-l 
( 1)· S(r,L+1) = L (r). S(m,.i) . 

m=£ m 

From this follows, with the help of a well-known recurrence formula, 
the interesting relation 

± (r). S(m,£) = (r). S(r,..e) + (.£+11). S(r,£+l) 
m=! m r 

= S (r+ 1, £+ 1) . 

Hence, we can now write (20) in the simple form 

which is generally valid for r ~1 and t~r't'. 

The simplest practical examples lead readily to 

M 1 (t) = QO - Q 1 ' for t ~ 1: , 

M
2

(t) = Q O - 3Ql + 2Q
2 

' 

M
3

(t) = Q
O 

- 7Q
1 

+ 12Q
2 

- 6Q
3 

' 

(22) 

(23) 

(24) 
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These results fully confirm and slightly generalize the formula (10) given b)' 
Foglio Para and Mandelli Bettoni in the excellent section 5 of their paper [l1J ' 
which, however, at other places was found to be somewhat less rei iable 
for some detai Is. 

4. Some centra I moments 

The central moments of k, defined by fL'r(t) = E ~ (k-M 1/ L are of obvious 
practical importance. In addition, explicit expressions up to third order would be 
most welcome for providing independent checks on the rei iabil ity of previously
establis~ed asymptotic formulae. Since P-'O(t) = MO(t) = 1 and l""l(t) = 0, the cases 
of real mterest are r = 2 and r = 3. 

For the variance we find with the help of (24) 

2 2 
(-L2(t) .:= 'Vk(t) = M

2
(t) - M

1
(t) 

2 2 
= Q 0 - Q 0 - 3Q 1 - Q 1 + 2Q 0 Q] + 2Q 2 (25) 

Use of the expl icit expressions given in (4c) leads, after some rearrangement, to 

-x -2X[' '2J !-L2 (t) = e (~-1- x) + e 1 - 2x (~ -1) + 3x , 
t 

for t ~2 1; 

which is in agreement with (9). With the help of the abbreviation y = eX 
we can also arrive at the form 

~2(t) = ~ [~(y-2x) + 1 - y + x(2-y+3x) ] ' 
y 

which coincides with the asymptotic expression given previously in [17J • 

For the third central moment we have similarly 
.' ~,.... 3 . 

= M
3

(t) - 3 M
2

(t)· M
1
(t) + 2 M

1
(t) 

2 3 2 3 = Q O - 3QO + 2QO - 7Q 1 - 9Q 1 - 2Q 1 + 12Q2 - 6Q3 

2 2 
+ 6QO (2Q 1 + Q 1 - Q2) - 6QO Q 1 + 6Q 1 Q 2 • 

Substitution of (4c) into this equation leads to a very long and unwieldy 
express i on wh i ch we do not want to reproduce here. The many rearrangements 
needed to bring it into a more manageable form are completely elementary 
and of no interest. One can finally arrive at an expression of the form 

(26) 

-x -2x[ 2J -3x[ 2 3J lL
3

(t) = e q.L-l-x)+3e 1-2x(P--l)+3x -e 2+6x-9x q.L-1)+17x • 
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By grouping together all the contributions which are proportional to t-t-= pt 
we obtain 

-x -2x 2 -3x - -x -2x 2 
f-L'3(t) = !-'l-(e - 6x e + 9x e )- e (l+x) + 3e (1 + 2x + 3x ) 

-3x 2 3 
- e (2 + 6x + 9x + 17x ) 

-3x 2x x 2 = e (e - 6x e + 9x ). ~ 

+ e -2 - 6x - 9x - 17x + 3e (1 + 2x + 3x ) - e (1 + x) • -3x { 2 3 x 2 2x } 

By means of the abbreviation y = eX this can finally be put in the form (always 
for t ~ 3-c) 

1 1 2 [ 2 ] 2 3) fL
3

(t) = l ~(y - 3x) + y 3+6x+9x - y(l+x) - 2 - 6x - 9x - 17x • 

It is not without rei ief that we note that this formula is in exact agreement with 
the corresponding asymptotic expression given previously [18J ' which was of 
a conspicuously complicated form. 

It seems to be a general feature of extended dead times that the asymptotic 
moments of order r for the corresponding counting distributions are in fact 
rigorous provided that t ~ r'C • 
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