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1. Introduction 

It is for well over half a century that the simple Poisson formula 
fL'k _ 

P (k) = -' . e (.L 
f.-'v k! (1) 

for the probabil ity of observing exactly k = 0, 1, .•• events within a given 
fixed time interval, where {L > 0 is the expectation value, has been recognized 
as the afpropriate statistical law for describing the emissions of a radioactive 
source L 1, 2J • The usual derivation of (1) is based on the hypothesis of a constant 
source activity. In principle, the simultaneous assumptions of decay and of I 

a time- independent (mean) count rate are contradictory, of course. Nevertheless, 
in practice this is often an excellent approximation to reality and the Poisson law 
can for most practical situations be taken as a sol id basis for the counting 
statistics. In addition, the consequences of (1) have been repeatedly verified 
by experiment to a high degree of accuracy (see e.g. [3J ' also for earlier 
references) . 

However, there also exist many short-I ived radionucl ides where a real istic 
measuring time becomes inevitably comparable with the half-life, and in this case 
the influence of decay cannot be neglected. It is the purpose of this report 
to study in some detail how the simple Poisson law (1) has to be modified 
in order to account for the finite I ifetime.,o,~.,the sOurce. . , 

For an early, but still very interesting attempt to tackle this problem we refer 
to [4J . As long as the total number of radioactive atoms forming the source is 
sufficiently large - and it is in fact rather difficult to find an experimental 
situation where this condition is not met - I the strict connection between 
disintegration and momentary activity as well as the mathematical compl ications 
due to the corresponding binomial distributions can be avoided by assuming 
that the activity diminishes in time according to an exponential law. Such 
a simpl ification is in particular appropriate for a low detection efficiency 
of the emitted radiation. 

* This report is dedicated to my friend and collaborator Albrecht Rytz 
on the occasion of his sixtieth birthday. 
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We therefore assume that the registered count rate p(t) is given by 

p(t) :;= f . e -At + p , 
o 

where 1/). is the mean I ifeti me of the source and P the background rate. 
Possible count-rate dependent experimental effects (as, for example, those 
due to dead time) which could disturb the assumed strict proportional ity between 
activity and measured count rate are supposed to be negl igibly small. 

There seem to exist mainly two practical situations where the effect of decay 
has to be taken into account. In the first case a single measurement of duration T 
is made, and this measurement is then repeated a large number of times with 
new sources of nominally the same initial activity. This situation may be real ized 
for very short-lived isotopes in a target which is periodically reactivated by 
a suitable nuclear reaction and measured immediately afterwards. From the sta
tistical point of view this case poses no problem. In fact, as a simple consequence 
of the superposition principle, also an inhomogeneous Poisson process still follows 
the Poisson statistics (1), but with ~ replaced by an effective expectation value 

T 

(2) 

P'eff = f f(t) dt • (3) 

o 

Hence, the distribution of the results of n measurements will be Poissonian, 
provided that we have statistically equivalent initial conditions for the n runs. 
It will be obvious that a given activation (of fixed time and intensity) will not 
result in the production of exactly the same number N of radioactive atoms. 
However, it can be shown that this is not only unnecessary, but that it is rather 
a Poisson distribution of N which is the physically required (and experimentally 
achievable) initial condition for t = O. 

The second experimental situation is I ikely to be of more direct interest. Here 
a given single, rapidly decaying source is measured for a large number of 
consecwtive short time intervals of equal ~leiigth t~. Whereas decay during to 
may be negligible, this will not be true for the total period of observation, 
which is T = n • to if the n measuring intervals follow each other without 
interruption. For experimental reasons it may be necessary that each measuring 
interval is followed by an "inactive" time t~ (used, for instance, for classification 
of the number of events k observed in the preceding "Iive" time to); we shall 
then have T = n(t 0 + t~). Provided that t~ is constant it will be without 
influence on the statistical distribution of the observed number of events 
per interval to for the total measuring time T. It is for this second type of 
experimental situation that the effect of decay on the measured 11 Poisson 
distribution" will be analyzed in what follows. 
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2. Derivation of the modified distribution 

Assuming t~ = 0 for the sake of simpl icity, and also that the total 
measuring time T is subdivided into a large number n of equal counting 
intervals to = Tin, we obtain for the probability of observing exactly k events 
in to' as a consequence of (1) and (2), the expression 

n-l 

I\P(k) = ~ :2 
j=O 
-j'At 

with f. = ~ + f' . eO. 
I 0 

P-o and ~ to = g , Hence, with foto = 
t 

I\P(k) = ~ ~ 
-jl\t k -j/\ t 

o 0 
(g + l-L' 0 • e ). k! • exp (- g - P-0 • e ) 

I 
t • e -g n-l 

= ~. k! 2 
j=O 

-j).t k -jAt 
o 0 

(g+p.-o·e ) 'exp(-p-o'e ) 

Since n »1 and with j to = t, we find that the probabil ity for observing k events 
is given in good approximation by 

T 
-g 

e J -/\tk -At 
"P(k) = T.k! (g+ P"o' e ). exp(-t-Lo ' e ) dt 

0 

k 
T -g 

k-r - At e L (k) r J exp(- rA t -= g 
1-'--0 

~o • e ) dt • T· k! r=Q r 
0 

,,~ Pt" , ..... , ~I 1 

In the absence of background, this expression can' be simplified considerably 
since forg = 0 we have gk-r = £k ' hence 

-r,o 
T 

( ) 1 k f -At ~ P k = NT tL 0 exp( - k /I t - P'o • e ) dt 

o 
T 

= oP(k)' t f exp[-klt+ p-o(1-e-
At

)] dt 

o 

Some approximate forms of (6) involving power-series expansions are discussed 
in the Appendix. It is easy to verify that quite generally 

I im ~P(k) = P(k) , where P(k) = P u, (k) 
1\-----0" 0 0 lo+g 

is the corresponding Poisson probabi I ity without decay. 

(4) 

(5) 

(6) 
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3. Search for a closed form of (5) 

The integral appearing in (5) can also be written in the form 

T ex:> ex:> 

J exp(- r~t - P-'o' e-I'tt) dt 

o 

= J exp( ... )dt - J exp( ... ) dt = lo(r) - 11(r) • 

o T 

With the variable x =A (t - T) and the abbreviation V' = 1\ T, the second term is 
ex:> 

11 (r) = f exp { - r(x + ~) - ~ 0 • e -(x + J')} ~x 
o 

ex:> - r..J" 
= T J exp( - rx -

-x tA-1 • e ) dx , 

o 

, -,J' 
where P-1 = P-o • e • 

Likewise we get for the first integral, with At = x, 

ex:> 

1 f . -x 10 (r) = ~ exp (- rx - ~ 0 • e ) dx • 

o 

Let us first consider the case where r > O. With s = 0 or 1 we then obtain 

I (r) 
s 

o 

This integral can be evaluated by means of the formula [5J 
ex:> 

J 
-x-k 

exp (- kx - ~ e ) dx = P- • y (k, ~ ) 

o 
(-L 

where y (k, p-') J 
-x k-1 = e • x dx , for k > 0 , 

o 

is the incomplete gamma function. 

Hence one can write for r > 0 

(7) 
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The case r = 0 has to be treated separately. Its contribution to the sum in (5) is 

T 

(~) g k J exp( - ~ 0 • e - ~ t) dt • 

o 

Putting - At • 
P-o • e = y we find 

t-tl 
k J e- y ~ = 

g (- y) 

~o 1 
00 00 1 k -y -y 

~ f~dY-J~dy. 
1\ l-l y y 

1 P-'o 

By means of the exponential integral function, which is defined by 

00 

for ~ > 0 , 

we can also write for this contribution 

Therefore, for k > 0 equation (5) takes on the form 

(8) 

(9) 

"P(k) % ;:~ I gk [E 1 ( f-'1) - E 1 ( fLo)] +~ (:)' l-r [Y (r, fL 0) - y (r, 1'-1)J ) . (10) 

This problem can now be readily settled. From (5) we conclude that 

T 
-g 

;>.P(O) = eT f exp(- t-L
o

' e-:>tt) dt 

o 

By a rearrangement which corresponds exactly to the one just appl ied to the case 
r = 0 we find 

(11) 
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Finally, in the absence of background (g = 0) the general expressions (10) and 
(11) reduce to 

!t(k=O) =~[E1(p.-1)-E1(P)] and 

It(k ~ 1) = 19"~ k! [Y (k, P-o) - Y (k, lL1)] ., 

• Ok-r r d· I since = 0 k-r ,0 ' as note prevIous y. 

This result can also be written as a product of the original Poisson distribution 
(at t = 0) and a correction factor C

k
• We then have 

where 

P'o 
e C = 

k ~ 

[E 1(P-1) - E1(l-l)] for k = 0 

p-:k [Y (k, p.) - Y (k, P-1)] 
11 k~1. 

To visualize the effect of the decay on the distribution of the counts k, 
some graphical representations of "P(k) are given in Figs. 1 and 2 for two 
values of initial expectation !L

o 
and some reduced decay parameters -(» = 1\ T. 

4. Moments of the modified distribution 

Considering the complicated structure of the formulae for the probabilities 
ilP(k), one might get the impression that the evaluation of the moments of k, 

defined for order r by 

will be a most cumbersome, if not impossible matter. It is interesting to note, 
therefore, that the necessary calculations can be considerably simplified just 
by interchanging the order of the two averaging processes involved, namely 
over k and T. 

For any given fixed moment t, the count rate p (t), given by (2), corresponds 
to a momentary expectation value E(k) of the number of events k, hence 

(12a) 

(12b) 

( 13) 
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-1 

10 

o 

k 
103UL~~ __ ~~ __ L--L~ __ ~~ __ L-~ __ L-~~ __ 4L~~L-~~~~~~ 

o 5 10 15 20 

Figure 1 - Decay-modified Poisson probabi I ities 1\ P(k), for P'o = 10 

and ~= 11 T = 0, 0.2, 0.5, 1, 2 and 5. Background is 

assumed to be negl igible. The case fr = 0 is a pure Poisson 

distributi on. 
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po=50 

~.1 P/." '''., 

k 
1~3.~~ __ ~ __ -L __ ~ __ ~ __ ~ __ ~~ __ ~ __ -L __ ~~~-4~ __ U-~~ 

o 10 20 30 40 50 60 70 

Figure 2 - Same as Fig. 1, but for fA'o = 50. 



9 

Since the process, also with the background component included, still is at any 
moment of the Poisson type, the corresponding probabilities are, according to (1), 
given by 

P 
= \-Lk(t) -p.(t) 

l-J-(t) k!' e 

Performing first the averaging over the total measuring time T, we get for the first 
moment 

T 

i\{Et(k)} = ",E(k) = t f ~(t) dt 

o 

hence by means of (13) 
T 

ItE(k) = g + ~o J e- At dt 

o 

fo . -,r. 
= g + 1J' (1 - e _) I for 1J1 -; o. 

The variance V(k) can be obtained in a similar simple way which has been 
indicated earl ier by Lewis et al. [6J • As a result of the Poisson nature we have 

f 

thus also 

Time averaging then yields 

i\{Vt(k)} - "V(k) = A{E/k
2

)} - /\{E t (k)}2 , 

or more exp I i ci t I y .' ~,-.' ; 
. T . T' 2 

').V(k) = t f ~2(t) + fL(t))] dt - [t f p.(t) dtJ • 

o 0 

Some rearrangements then lead with (13) to 

T 
1 J -At2 2 'AV(k) = T (g + p-o e ) dt +l(k) - "E (k) 

o 
2 2 

2 g p-o - ~ P' 0 - 2 ~ 2 
= g + ,r (1 - e ) + 2"'" (1 - e ) + "E (k) - A E (k) • 

(14) 

(15a) 

(15b) 
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2g 2 

S E2(k) 2 P-'o (1 _ e-~) +P-
2
° (1 _ e-~)2 , ince "\ = g + 

f\ ~ 11' 
we can also write 

2 2 
P-o -2~ P-'o -.J"2 

"V(k) = ~ (1 - e ) + E(k) - - (1 - e ) 
/I 2 '11 - 1\ "8'2 

2 
!-Lo -~ [~ -t?': -J" ] = E(k) + - (1 - e ) - (1 + e ) - (1 - e ) 

1\"..2 2 

2 -'\9" 
= E (k) + Pv 0 (1 - e -~'? J 19". 1 + e - 1) 

A 1J"2 l 2 1 _ e -19" 

r ]211J'l l+e-19" I = A E (k) + I ?t E (k) - g 2" . -19" - 1 I for 1Jl I o. 
- 1 - e 

For g = o this corresponds to the result given in [6J as eq. 26. It follows 
from (16) that the ratio 

( 16) 

R = ,V(k) - AE~) ~ ~ [l + e ~? _ 1 (17) 

~E(k) - gJ G - e J 
is only a function of .J'. Therefore, if the experimental mean and variance of k 
are inserted, this relation allows an evaluation of the half-life of the corresponding 
nucl ide, since 

T1/2 = (1/I\)ln2 = (T/19")ln2. 

~2 
12 • 

In general, however, it will be preferable to base such a determination on the 
entire empirical distribution of the values k and to deduce the half-I ife from 
a best fit of the theoretical values 1\ P(k). In this way, a possible systematic 
deviation in the shape of the curve can be readily seen in a graphical plot 
of the data while it would remain undetected in an evaluation using only the first 
two empirical moments. 
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In view of some practical appl ications of this method for measuring half-I ives, 
the evaluation of the probabilities ~P(k) has been implemented in an automatic 
computer program. This has allowed us to verify the different formulae given 
for the moments and combinations of them (in particular eq. 17) to a very high 
degree of accuracy •. 

At present we are studying various methods to take the influence of a dead time 
into account. General results have been obtained for the moments and their 
description is in preparation. 

APPENDIX 

Some approximations of equation 6 

In the exact form given in (6) as 

T 

I{(k) = oP(k). + f exp [- kAt+ 1-'-0(1- e-
IIt

)] dt 

o 

the exponent can be developed into a power series yielding 

(Al) 

T T 

f exp {- kAt + P--o [1 - (1 - At ± ... ) ] } dt ~ f e - A (k - P'o)t dt = 
- A (k- Pt )T 1 - e 0 

1\ (k - p"o) 
o o 

Hence " for·,r = 1\ T « 1 we have the simple approximation 

(A2) 

which is valid for any k ~ o. 

a) A linear approximation 

For checking the moments, it is more practical to have a power series in"'. 
Development of (A2) up to I inear terms gives readily 

j\P(k) '" oP(k) [1 - t (k - P'o)] • (A3) 
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For the expectation value we then find in this approximation 

CD 

E(k) = 2: k· P(k) ~ L k • P - "'" :> k(k - ~ ) • P 
1\ k=O)\ 2 - 0 

where the Poisson probabil ity oP(k) is simply written as P and all sums are 
over k. 

The ordinary moments of k for a Poisson distribution with parameter \-Lo are 
known [7J to be given by 

r • 

m=.2: k
r 

• P = 2: S(r, j) . ~' , 
r . 1 ' 0 ,= 

(A4) 

where S(r, j) is a Stirl ing number of the second kind. Hence, the first moments are 

2 3 
m3 = P"o + 3 p.-o + P"' 0 

2 3 4 
m4 = ~o + 7 ~o + 6 t-Lo + P' 0 

This gives for the expectation of the modified distr!bution (A3) 

'l.,E(k) :::: m - 'lJ' (m - m LL) = IL (1 - ""') 
/1 1 2 2 1 r-0 r 0 2 

Likewise the second moment is 

Hence, the variance - also up to I inear terms in --Jt - turns out to be 

It follows that in this lowest approximation expectation value and variance 
are equal. 

b) A quadratic approximation 

In order to obtain more information, it is obviously necessary to go at least 
to second order in .",. One might feel tempted, for the sake of simpl icity, 
to start again from (A2). However, since this is in part already a first-order 
approximation, we can hardly hope to get all terms of second order correctly. 
Nevertheless, the necessary correction could possibly be guessed. So let us 
make an attempt which gives 

. P'(k) -J P(k) {1 _1 (k _ LV ),J-' + 1 (k _ LL )2 'lJ'2} . 
A 0 2 r·o 6 r 0 

(A5) 

(A6) 

(A7) 
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A check of the normal ization yields 

~ ~2· 2 
L:>t'(k) = LP -"2 (:>.- kP - (-Lo) + 6 (~~ k P - 2 fo L kP + 

~ ~2 2 
= 1 -"2 (m 1 - p) + 6 (m2 - 2 m 1 t-t' 0 + f' 0 ) 

1 2 
= 1 + (; P-o ~ . 

Hence, the normalization can be arranged by adding a correction term, i.e. 

Obviously, this heuristic approach needs confirmation. For this purpose we start 
again from (A 1). Development up to second order gives 

T T 

t J exp{-kAt+ fl'o(l-e-/\t) }dt -"V t J exp {-kAt+ !LoAt- ~OA2t2} dt 

o o 

(AS) 

T t J exp {-: (k - !L
o

) ·/\t - ~o Ot)2}dt • (A9a) 

o 

With the abbreviations 

k - ~ 
__ . _0 = 0( 

P'o 'i\ 
and ll.L,\2=A 

2 '-011 1-', 

the exponent takes the form 

{ ... } = - 2 0< ~ • t - ~ • t
2 = - ~ (0( + t)2 + o(2~ • 

With the new variable x = t +0( we therEl'fore simply have 

T ~~ 

1f { },...J 2 1 f 2 T exp •• • dx = exp ( 0( ~). T exp (- ~ x ) dx • 

o 

(A9b) 
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A series development of the integrand gives 

T+O( T+o< 

If 2 If 2124 T exp (- ~ x ) dx = r (1 - ~ x +"2 ~ x + ... ) dx 

C( 0( 

~ t IT -~ [(1 +od - o(3} ~~ [(T +cd - o(5}F .. ·1 

= 1 - ~ (T2 + 30( T + 30(2) 

~2 4 3 2 2 3 4 
+ 10 (T + 5 0( T + 10 d.. T + 1 0 0<. T + 5 0( ) + ... 

If we retain only terms up to ~2 and (k - p.-o)2 I (A9) can also be written as 

T+O( 
o(2~ 1 f -~x2 

e ·r e dx 

0<. 2 2 

,...J l (k - p-0) ] 1 (k - P'o) -J' 1 2 1 2 2\ 
= 1 + 1 - - (k - ~ ) - - - ~ ~ + - (k - P' ~ ~ 

2 ~o 2 !-l-o 0 2 6 0 4 . 0 

1 2 ~ ~ ~ 2 = 1 - - (k - p-) - - (k - ~ ) - - ~ + - (k - LL ) 
2p- 0 2 0 6 0 4 10 

o 2 
1 2 1J'2 (k - P'o) 

+ 2 P-0 (k - P'o) -"6 rvo 2 P'o 

~ ",2 2 2 1 
= 1 - - (k - kL ) - - Lt, + "" (k - LL) -. 2 '·0 6 ro r· 0 6 

Our second-order approximation to the,~dHied Poisson probabilities is therefore . , 

This expression agrees with (AS) I confirming thereby the val idity of the surmised 
correction term. 

(A 10) 

Let us now look at the moments of k which correspond to the approximation (A 10). 
The expectation value is 
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Use of the expl icit expressions (A5) for the Poisson moments m leads to 
r 

This is in agreement with a power-series development of the exact formula (14) 
since 

For the second ordinary moment we obtain likewise from (A 10) 

Substitution of (A5) then leads after some rearrangements to the approximation 

For the variance we therefore find, up to terms proportional to -.J2 , 

which gives finally 

~V(k) '" fLo [1 - ~ + :2 (1 + fLo /2)J . 

For comparison with the previous exact result (17). we form the ratio 
~~ P!( , .... , . I . , 

R = 
~V(k)- "E(k) 

2 
?lE (k) 

Substitution of (A 11) and (A 12) leads to 

This result agrees with the first non-vanishing term resulting from the series 
development of (17). We therefore conclude that (A10) is a valid second-order 
approximation of (12), provided that ". ~ 1 • 

(A 11) 

(A 12) 

(A 13) 
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