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1. I n t ro d u c t ion 

In a recent attempt to evaluate the mean arrival time of the registered 
pulse number k from a decaying radioactive source, the mean activity 
of which is decreasing exponentia Ily in time (for a pre liminary account 
see [1 J ), we came across some infinite sums of inverse products which 
were a 11 of the type 

co [K ]-1 
kS K =- 2: n.n (n + j) , 

, n=l I=k 

with k = 1,2,3, ••• and K ~ k. 

The simplest example of this kind corresponds to k = 1, where we have 

co [K ]-1 
1 S K = 2: .n (n + j) • 

n=l 1=0 

For this case, some explicit results like 

co 

2 
n=l n 

1 
(n + 1) = 1 , 

co 1 2 .~--::-.-
n=l n (n + 1) (n + 2) 

and 
. co 1 1 
L n (n + 1) (n + 2) (n + 3) = 18 
n=l 

can be found in [2J which allow us to expect that 

K·K! 
, for K=1,2, .•• , 

= 1 
4 

will be the corresponding general formula (see note page 12). 

However, analogous expressions for k > 1 seem to be unknown. As they 
were needed, we made an attempt (admittedly in desperation) to find them 
hopefu Ily by di rect numerica I eva I uation. 

(1) 

(2) 

(3) 



k 

2 

3 

4 

2 

2. Results of the numerical evaluation 

For determining explicitly some of the simpler sums which are defined 
in a general way by (1), a very short and elementary computer program 
was written. For practical reasons, the summation was limited to 
n = 32 000 terms, but partia I sums were printed out for each 2 000 consecutive 
terms for checking purposes. In fact, in order to minimize rounding 
problems, the actual summation process was performed in reverse order, 
i.e. from n = 32 000 to n = 1. In order to get reliable numerical results 
a spec ia I set of subroutines, ca lied 11 improved extended prec ision ", was used. 
With these programs, which were written by P. Cam~ of BIPM for an IBM 
1130 computer, one can be sure to get at least 11 significant figures for 
an operation, since the "mantissa" of a real number is represented by 40 bits. 

The numerical results obtained in this way by direct summation are 
reproduced in Table 1 for k = 1 to 4 and x = K - k = 0 to 3. 

x = 0* x = 1 x = 2 x = 3 

0.999 968 751 0.249 999 999 512 0.055 555 555 556 0.010 416 666 667 
f 

0.749 968 751 0.138 888 888 401 0.024 305 555 556 0.003 750 000 000 

0.611 079 863 0.090 277 777 290 0.013 055 555 556 0.001 712 962 963 

0.520 802 086 0.064 166 666 178 0.007 916 666 667 0.000904 195 011 

Table 1 - Results obtained for the sums kSK by the computer applying (1) 

up to n = 32 000 terms, with x = K - k. 

* given with only 9 decimals, for reasons indicated in the text 

'I; 

The results expected according to (3) fc··r k = '1 are given in Table 2 
together with their difference with respect to those given in Table 1. 
The uncertainties associated with .d x are estimated from the partial sums; 
they explain why the empirical values for x = 0 are stated with 9 decimals 
only. 
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1 S K 6 x 

1 = 1 .000 000 000 (31 249 + 2) • 10-9 

1/4 = 0.250 000 000 000 (488~ 1}·10-12 

1/18 = 0.055 555 555 556 ~ 
<1.10- 12 

1/96 = 0.010 416 666 667 

Table 2 - Theoretical results for lSK and empirical differences 

6. x = l S K(theor.) - lSK (emp.) 

The observed differences /j.x for x = 0 and 1 are readily explained 
by the fact that the summation was stopped too early, as is revealed 
by the partial sums given in Table 3. For x ~2 a summation over some 
10000 terms was always more than sufficient. 

n
1 

n
2 

k = 1 k = 2 k=3 

t 

k = 4 

22 001 24 000 0.000 003 788 0.000 003 787 0.000 003 787 0.000 003 787 

24 001 26 000 3 205 3 205 3 205 3 204 

26 001 28 000 2 747 2 747 2 747 2 747 

28 001 30 000 2 381 2 381 2 381 2 381 

30 001 32 000 2 083 2 083 2 083 2 083 

n
2 1 

Table 3 - Some empirical partial sums 6. kSk L fo r k = K = 1 to 4 - n (n + k) 
n=n 

~j ~,. '''''. 
' ; 1 

The fact that the partial sums .6kSk listed in Table 3 are practically 
independent of k (as was to be expected for n» k}allows us to use 
the values /j.x given in Table 2 for correcting the observed values in 
the columns x = 0 and 1 of Table 1. In this way the new empirical sums 
indicated in Table 4 are obtained which correspond to an infinite summation. 
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k x=O x = 1 

1 .000 000 000 (2)* 0.250 000 000 000 (1)* 

2 0.750 000 000 O. 138 888 888 889 

3 0.611111112 0.090 277 777 778 

4 10.520 833 335 0.064 166 666 666 

Table 4 - Corrected empirical sums k5K of Table 1 (for infinite summation) 

3. Interpretation of the numerical data 

With the data given in Tables 4 and 1, we might now be in 
a position to guess what the formulae for the exact results are likely to be. 
For this, our first task is an attempt to express the numerical results 
obtained for the infinite sums in the simpler form of fractions. An example 
will be sufficient to explain how these are obtained. Consider the sum 

356 fV 0.001 712 962 963 (1) , 

which is interpreted as 

where the sequence "296" is supposed to repeat itself to infinity. Hence 

5 (171+ 296 }.10-5 = 
3 6 = 999 

171 125 

999 • 10
5 

37 
= -=2-=-1 ---:6~0-::::'0 . 

Likewise we can easily find probable exact fractions for all the sums 
e;alua,ted (except for 457 where n~, ~e,!iodicJ;ty is yet visible); they are 
given In Table 5. ; 

Our next objective is to find formulae from which the ratios listed 
in Table 5 can be obtained in a general way. This will inevitably imply 
some amount of "educated guessing". The case k = 1 being settled 
by (3), we begin with k = 2. 

* estimated uncertainty in units of the last digit for a given value of x 
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k x = 0 2 3 

1 1 
4 18 96 

2 
3 5 7 3 
4 36 288 800 

3 
11 13 47 37 
18 144 3 600 21 600 

4 
25 77 19 ? 
48 1 200 2 400 

Table 5 - Probable exact values of kSK 

a) The case k = 2 

For interpreting the empirical sequence 3/4, 5/36, 7/288, 3/800, 
we first have a look at the denominators. They are 

for K = 2: 4 = 2 t • 2 , 
3: 36 = 3! • 6 , 

4: 288 = 4! • 12 , 
5: 800=5!·20/3 . 

If 3/800 is replaced by 9/2400, the sequence of denominators is represented 
by K! K(K-1). The corresponding numerators are then 3, 5, 7, 9, •••• 
Therefore, the observed results can be described by 

2K - 1 
(K - 1) K • K l • 

b) The ~ase k = 3 

(4) 

The sequence to be examined is 11/18, 13/144, 47/3600, 37/21600, ••• 
For the denominators we try 

forK=3: 18=3!· 3, 

4: 1 44 = 4!· 6, 

5: 3600 = 5!·30, 

6: 21600 = 6!·30 • 
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In analogy with (4) we try (K -2) (K -1) K • K! which yields 

K (K-2) (K-1) K Kt 

3 36 = 18 • 2 

4 576 = 144 • 4 

5 7200 = 3 600 • 2 

6 86 400 = 21 600 • 4 

Use of these new denominators gives for the corresponding numerators 
the sequence 

11 • 2 = 22, 13 • 4 = 52, 47 • 2 = 94, 37· 4 = 148, ••• 

For further analysis, the following scheme of successive differences may be 
useful: 

x = K - 3 

~ 
t::.. Yx 

D,2 
Yx 

0 22 
I 30 

I 
52 12 

42 
2 94 12 

54 
3 148 

It shows that the numerators y can be expressed by a power series in x 
x 

of the second order, i . e • 

2 
Y = a +a +a 

x 0 1
x 

2
x 

According to Newton's interpolation formula, a power series of order r 
can also be written as a difference equation of the form (see any good 
textbook on numerical mathematics, as e.g. [3J) 

r • 

y = L (~) ~ 1 Y , 
x 0-0 1 0 1-

with 
o 

b. y = y • o 0 

In our case (the needed llfirst ll differences ~ 1 Yo are underlined in the 
preceding table) this gives for the numerators 



Yx = 22+(~)30+(;) 12 

2 = 22 + 24 x + 6 x , 

or in terms of K, since x = K - 3, 

2 
y (K) = 4 - 12 K + 6 K 0 

7 

We can therefore expect for the case k = 3 the formula 

_. 2 (2 - 6 K + 3 K2) 
35 K - (K - 2) (K - 1) K 0 K l • 

c) The case k = 4 

For the empirical sequence 25/48, 77/1200, 19/2400, 000 

we try, in analogy with the previous results, for the denominators the 
formula (K - 3) (K - 2) (K -1) K 0 K! 0 This gives 

~~ (K -2) (K -1) K 0 K~ 

4 I 576 = 48 0 12 

5 14 400 = 1 200· 12 

6 259 200 = 2 400 0 108 

7 4 233 600 

In the same way as before, we now obtain for the numerators the series 

(5) 

25 0 12 = 300, 77 0 12 = 924, 19 0 108 = 2 052, 3 828, 000, where -12 
the last value is the result of the multiplication 4233 600 x 904 195 011 0 10 

Th;is sequence is again analyzed by a difference scheme, i 0 e 0 we form: 
~.1 f'I." ....... 

-I; 

2 3 
x = K-4 Yx 6. Yx ~ Yx 6. Yx 

0 300 
624 

924 504 
1 128 144 

2 2 052 648 
1 776 

3 3 828 
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As before, this leads to the power series 

Yx = 300 + (~) 624 + (;) 504 + (;) 144 

2 3 = 300 + 420 x + 180 x + 24 x , 

or in terms of K = x + 4, after some elementary rearrangements, 

y ( K) = - 36 + 132 K - 108 K2 + 24 K3 • 

Hence, we can suggest for the case k = 4 the formula 

12 (- 3 + 11 K - 9 K2 + 2 K
3

) 
4$ K = (K - 3) (K - 2) (K - 1) K • K! 

4. The general formula for k$K 

Obviously, our next task is to try to find a general formula for 
k = 1, 2, ••• of which the previous results (3) to (6) are special cases. 

As for the denominator of the general expression looked for, it is not f 

difficult to guess that it will be given by 

k-1 
K! n (K - j) • 

j=O 

The case of the numerator is less obvious. Let us, just for trying, write 
it in the form 

(k - 1)! ~ K j - 1 L c k "I' • 
j=l ' 

A comparison of (7b) with the more explicit results (3) to (6) yields 
for the unknown coefficients c

k 
" the empirical values given in Table 6. 

, 1 

k 

2 

3 

4 

- 1 

2 

-6 

2 

-6 

22 

3 

- 18 4 

Table 6 - Values of the coefficients ck j appearing in the suggested 
expression (7b) for the numerator of a general formula for kS K 

(6) 

(7a) 

(7b) 
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A first look at Table 6 does not reveal a simple way to form the coefficients. 
Some familiarity with combinatorial problems, however, and in particular 
the characteristic alternating sequence of signs, might suggest a closer 
comparison with Stirling numbers. Indeed, this reveals that we apparently 
have the simple relation 

c k . = i' s (k, i) , 
, I 

(8) 

where s(k, j} are Stirling numbers of the first kind. For an excellent treatment 
of these numbers see [4J • A more extended tabulation (for 1 ~ k ~ 25 and 
1 ~ i ~ k) can be found in [5J • In Table 7 we give a list of s(k, j} till k = 6. 

If the results contained in (7) and (8) are combined, the general formula 
looked for turns out to be given by 

k '-1 
(k - 1) ~ L: i • s (k, i) • K I 

j=l 
k-1 

K! n (k-j) 
i=O 

This is the main result of the present study. 

k I i = 1 2 3 4 

2 - 1 

3 2 -3 

4 -6 11 -6 

5 I 24 -50 35- ~,. ..... , - 10'; 

6 I - 120 274 - 225 85 

5 6 

-15 

Table 7 - Some Stirling numbers s(k, j} of the first kind 

5. Some additions and conclusions 

In order to strengthen our confidence in the above heuristic formula 
(9), it may be worthwhile to compare it with some further results of 
numerical summations not already used in the derivation of (9). In fact, 
these new data would have been of little value before since. they cannot be 
easi Iy transformed into a fraction, as wi 11 be seen from Table 8. 

(9) 
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k K numerica I sum 

5 7 0.005204081633 

8 0.000 526 502 268 

9 0.000 049 314 479 

6 8 0.003 624 574 830 

9 0.000 329 244 352 

10 0.000 027 964 118 

expected va I ue 

51 
9 800 

743 
1 411 200 

1 879 
38102400 

341 
94 080 

2 509 
7 620 480 

2 131 
76 204 800 

Table 8 - Some further numerical results for the sums kSK and the corres
ponding expected values according to (9) 

It is easy to verify that the expected values agree in all the six cases listed 
in Table 8 with those obtained numerically for the 12 decimals given. This 
perfect agreement substantiates our claim that (9) must be the correct formula. 
We are confident, therefore, that if some day a general expression for kSK 
will be derived on sound mathematical grounds - assuming that this has not 
yet been done -, it will be identical with our heuristic result. 

The method described in this report to derive a general formula for some 
infinite sums on the basis of a number of sufficiently accurate numerical 
results is obviously far from being a general approach. In particular, 
no progress wou Id have been possible if the n,umerica I sums had not shown 
a periodicity which allowed their tr~ri'sformation into fractions. This is clearly 
a very special situation. In fact, in our original problem (compare [ll ) 
another possible decomposition looked quite tempting, too. This would have 
led us to consider sums of the type 

co k+' x 1 
---:--

kT (x) = L 
n • 0 1 1= n n (n + k + s) 

s=O 

with k= 1,2, .•• and n= 1,2, ••• 

, 

This is quite different from (1). Apparently, the only known result related 
to this type is [6] 

(10) 
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00 xl (n - 1)! 
00 

xl 
T = ~ = L j n -·-1 

j=O j=n I • 

n (n + s) x 

s=O 

Since 
00 ) 

T = +L n 
j=l 

j 

n (n + s) 
s=O 

00 .+ 1 

+ L 
xl 1. + 

1
T

n 
(x) = = , 

n 
j=O I n 

n n (n + 1 + s) 
s=O 

the case k = 1 of (10) can be considered as settled, but no solutions are 
known for k > 1. However, already an expression like (11) would no doubt 
be too complicated to be recognizable from numerical results. 

f 
Since the problem described by (1) represents a rather special case with 
features we can hardly hope to find again, one may wonder why the way 
in which we obtained formula (9) has been described here in some detail. 
Perhaps a possible justification can be that the lucky outcome of this search 
might be an encouragement to look also in more complicated situations 
for ways to transform the problem into a form where a purely numerical 
attack is not quite hopeless, at least for obtaining a partial solution. This, 
in turn, can then serve as a starting point for further trials. 

I am very grateful to P. Carn§ for the kind in,terest he has shown In 
the problems treated in this report. -' ~'-'-
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Note added in proof 

The surmised equation (3) is in fact correct since it corresponds to 
the following expression we have just found in [6J as no. 285 
in the form 

f p 
j=O (n + j) t 

= (n - 1). (n - 1 H ' 

which can be readily transformed into 

ex> 1 _ ex> l n-1. i 
;? 0+ 1) 0+2) ... (j+n) -;? 0 (, + s), = 
,-0 ,-1 s-O , 

(Ja nua ry 1979) 


