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Summary 

The effect of additional scatter on a Poisson process 
is studied. Possible causes for such fluctuations are 
insufficient stability of the detection efficiency or 
of the associated electronics. It is shown with a simple 
model that the presence of fluctuations results in 
a characteristic broadening of the counting distribution. 
Comparison of the observed distribution with the one 
expected for a Poisson process with the same mean value 
will show three different regions, each with predictable 
sign of the deviation; the presence of scatter can thus 
be decided upon bya sign test. Experimental results are 
in excellent agreement with this expectation. 

1. I ntroduc tion 

In the experimental measurement of a process which, for theoretical 
reasons, is assumed to follow a simple Poisson law, 'complete agreement 
with this distribution can be expected only if the methods used to detect 
and register the "events" in question do not i..r;ttroduce any measurable 
distortion. The effect of a finite res~I~~'i'ng or 'dead time, which results 
in a more regular spacing of the events and hence in a reduction of the 
variance-to-mean ratio, has been treated some time ago [1] and 
the results will not be repeated here. 

I n some sense the situation we wish to describe in what fo 1I0ws is just 
the opposite of the case treated before: we look for the possible presence 
of effects which augment the variance of the observed process. In the field 
of counting nuclear events, the parameter p.- of the Poisson distribution 
corresponds to some expectation value \f = r t, where t is the measuring 
time and f denotes the {observed} mean count rate. Since S' is related 
to a more fundamental quantity like the source activity No by means of 
an experimental parameter which is of the nature of a detection 
efficiency c , we have in the simplest situation a relation of the type 
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U,=N ·t.t 
l- 0 ' 

neglecting decay or other possible complications. Whereas No is 
a constant and t can usually be measured with negligible uncertainty, 
this is not necessarily the case for E. • Various causes for possible 
fluctuations of £ as a function of time can be imagined, depending 
on the nature of the detector and the associated electronics. Thus for 
a proportional counter, for instance, it may prove difficult or impossible 
to ensure sufficient stability in the high tension or uniformity in the 
composition and pressure of the counting gas to render these effects 
negligible [2J • In all these cases, the result would be a corresponding 
increase in the observed variance, exceeding thereby the value expected 
for a pure Poisson process. 

While the very knowledge of the possible presence or absence of effects 
augmenting the scatter of the experimental data is already an interesting 
piece of information, the neglect of such effects would result in serious 

(1) 

errors for quantities which are directly derived from the value of the observed 
variance, as it is for instance the case for dead times determined on the basis 
of variance -to-mean ratios a lone [3] . 

2. The negative binomial distribution as a model 

The exact way an experimental distribution may differ from the 
Poisson law obviously depends on the detailed mechanism of the interfering 
effects. If we wish to arrive at a general description, a model has to be 
chosen which is both reasonably flexible and sufficiently simple for 
an exact mathematical treatment. As a matter of fact, there is an embarassingly 
rich choice of possible generalizations of the Poisson law; for a good 
general review see e.g. [4J . Considering the experimental origin 
of the distortion, it may be natural in our case to look for such a genera
lization where the constant detection efficiency E. is replaced by a positive 
random quantity. Perhaps the simple.st~,c,hoice:'fconsistent with the criteria 
given above is the family of gamma densities,' i.e. 

r 
c 

r (r) 

r-l -c ~ 
\:L' e , 

with r > 0 and c > 0 • 

for 

It can be shown that the re lative spread of p; is then given by 

(2) 

(2a) 



In the original Poisson distribution 
k 

P (k) = ~ e-(L 
P-' k! ' 
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which indicates the probability that exactly k events are observed 
if the expectation value is tAl' we now consider ~ as a random quantity 
which is described by (2). The corresponding new probabilities W(k) 
resulting from a superposition or mixture is then given by 

co 

W(k) = J P p.- (k) • f(p--) d p" 

0 

co 

J f"k .-fL r 
-r-l -cp-c = (..L e dt:V k ! r (r) 0 

co 

= c
r J l-l k+r-l e - p.(c+l) d P' . 

k ! r (r) 0 

Putting p.-(c+l) = A, i.e. d ~ = d'A/(c+l), we obtain 

W(k) = 

= 

r 
c 

(c+ l)k+r k 

r (k+r) 

k ! r (r) 

r (r) 

r 
c 

(c+ 1 )k+r • 
"I 

This res~lt and its derivation have been well known for long, of course; 
they can be found in the textbooks under the headings negative binomial, 
P61ya or Pasca I distribution. 

For many applications somewhat different expressions for W(k) are often 
more convenient. Thus, since 

r (k+r) 

k ~ r (r) 

= (k+r- 1) = (k+kr- 1 ) , 
r-l 

the use of the abbreviation 

c 
p = c+ 1 ' 

36 

(3) 

(4) 
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hence a Iso 

q == 1 - p = c+ 1 ' 

permits to bring (4) into the equivalent form 

W (k) = (k + ~ - 1) pr q k 

= (k+r-1) r k 
1 P q , 

r -
where 0 ~ p ~ 1 • 

As for any real r there exists the identity 

for k integer and non-negative, 

another possible form is 

- r r k 
W (k) = (k) p (- q) , 

always with k = 0, 1, 2, ••• This form well explains the name IInegative 
binomial ll given to the distribution. 

(Sa) 

(5b) 

Finally, a further useful alternative can be derived from (4) by observing that 

r (k+r) = (k+r-1) (k+r-2) ••• (k+r-k) r (r) 

= r (r+ 1) (r+2) ••• (r+k-1) r (r) 

(1 +.!.) (1 + ~ ) (1 + k - 1 ) r (r) rk 
r r r 

= 

If we put 

b· -- - , 
r 

(4) can be brought into the form 

W(k) = _r IT (1 + 'b) _c_ lib _1--:-k k-1 [J 
k ~ j=l I c+l (c+1)k 

[ 
1 ] k 1 [ 1 ] lib ~J-1 = - 1 L (1 + jb) • 

b (c+l) k t 1 + l/c j=l 

With the additional abbreviation 
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we arrive at the expression 

11, k [ ] k-l W(k) = _1,"-_ 1 k+l/b at' (1 + ob) 
k I 1 + bu.. J \. I' 

• r 1=1 

Whichever form may be preferred, it will be noted that the distribution 
has two independent parameters (which are p.-and b in the case of eq. 6), 
and it is this feature which guarantees its additional flexibility compared 
to the simple Po isson law. 

For the moments see the Appendix. 

3. The Poisson approximation of the Polya distribution 

For obvious practical reasons, our main interest in the P61ya 
(or negative binomial) distribution is for the case where it differs little 
from the Poisson law. The aim will therefore be to derive an expression 

0D. uO 

(6) 

where W(k) is represented by a Poisson probability multiplied by a correction 
which might be a power series development in a suitable parameter like b. 
If such a form were available, we could then hope to proceed further 
by applying a reasoning simJlar to the one used already in [lJ • The parameter 
b seems to be a good choice indeed, since it follows easily from (6) that 

lim W(k) = Pp- (k) • 
b-O 

Hence, our next task is to derive an approximation for W(k) which 
includes a correction term linear in b. Let us consider the different 
factors in (6) separate Iy. Two of them are easy to treat and they give 
readily 

(1 +bp-)-k -J 1 - k b~, 
~, ",t ...... , ')i 

k-l 
'IT (1 + Ib) = (1 + b) (1 + 2b) ••• (1 + [k-l] b) 
1=1 ~ 1 + (b + 2b + 3b + 

= 1 + ¥ k (k-l) 

The handling of the term 

1 lib 
W (0) = (1 + b~) 

••• + [k-l] b) 

is a bit more de licate. Putting lib = n, we can write 

(7) 

(8) 

(9) 
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[W(O)]-l = (1 +f.I.-)n = i (~) (f-A-)i 
n 0-0 1 n 1-

hence 

= 1 + n I-V + -2n (n-l) (\J')2 + -6n (n-l) (n-2) (""")3 + ••• 
n n n 

= 1 +P'+ }(1_~)ll'2 + t(l-~) (1_~)~3 + 2~ (l-~) (l-~) (l_~)p-4 + ••• 

~2 ~3 p.-4 
= 1 +~+ 2i (l-b) + 3i (l-b) (1-2b) + 4i (1-b) (1-2b) (1-3b) + ••• .. . 

n i i - 1 
= 1 +f-l' + L ~, IT (1 - kb) 

j=2 I. k=l 

b 2 co p-k p.- b 2 
= e~ - -!-t- ""'" - = e - -2 11-' e!1' 

2 !&"o k! 

u, b 2 
= e r- (1 - 2" p.- ) ; 

Substitution of (8), (9) and (10) into~ (4)) .. leads i to the approximation 
looked for, namely . 

k 
W(k) = ~ I e -P- (1 + : jL2) (1 - bk p.) (1 + ~ k [k-1] ) 

~ PfI-"(k») 1 + b [~2 - kp, + ~ (k-1) ] l 
= PfI-(k»)1 +H(p-- k)2 - kJ! " (11) 
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Before drawing some conclusions from 'this approximation which is 
of the desired form, let us check whether (11) leads to the correct 
first moments. For explicit expressions of the ordinary moments 
co 

L k
r 

Ptu(k) of a Poisson distribution see e.g. [4J • Dropping the 
k=O 
arguments k and P-' for brevity in the summations, we obtain 

- for the norma I ization: 

N = LW = L p+ir22P-(2p.-+1)2:kP+2:k2p] 

= 1 + i ~ 2 1 - (2 P' + 1) ~ + !L' q.A.I + 1)] = 1 , 

- for the first moment: 

m1(k) =2: kW = ~ kP + i ~2 2: kP - (2p-'+1) ~ k2
P + 2: k

3
p ] 

36 

(12a) 

= \:"" + i ~ 2 ll- - (2 P' + 1) p-- (1 + fL') + P-' (1 + 3 p.- + !-'-' 2) ] = p.- , ( 1 2 b) 

- for the second moment: 

m2 (k) = 2: k
2

W = 2: k
2

P + i ~2 2: k
2

P - (2p.-+1) 2: k
3

p + 2 k4p 

=p-- (1 +11' ) + i ~2 P. (1 + l-L) - (2 ~ + 1) ~(1 +3 1--'-'+ ~2) + p.-(1 +7p.- +6 f-L'2 + ~3)J 

= ~ (1 + !L) + b p.-2 , 

which I.eads for the variance to -.,' "','" ...... 

Since the results (12) agree with the values given in Table A 1 of the 
Appendix for the moments of the P61ya distribution, we can be assured 
that the approximation (11) is a valid one. It follows from (11) that W(k) 
coincides with P(k) if the term in the curly brackets vanishes, hence for 

(~ - k)2 _ k = 0, 

which has the two solutions 

(12c) 

(12d) 

(13) 



8 

This is quite an interesting result. First we note that the crossing 
of the two curves occurs at exactly the same points we have found 
previously for a Poisson process disturbed by a (small) dead time 
(see eq. 8 in [1]). As for the deviations between W(k) and P(k), 
however, the signs are different: if the original Poisson distribution 
has been somehow (slightly) perturbed so that its variance is increased, 
this should reflect itself in the sign of the differences W(k) - P(k), 
which is now expected to be negative for values of k lying between 
the limits k1 and k2 determined by (13), but positive for all k values 
outside this range. For a given set of measurements, the question whether 
additional scatter can be detected or not may therefore be decided upon 
e. g. by a sign test, as it has been shown previously. 

We note in passing that it is no d_oubt m()re thana mere coincidence 
that the result (f3) agrees with the confidence limits determined by -
van der Waerden [51 for the parameter ~ of a Poisson process on the basis 
of a measured value k (taking g = 1). The practical usefulness of such 
lIasymmetrica I errors ll has been shown in [6] . 

4. How to simulate a P61ya process 

f 
In order to show the feasibility of the approach sketched above, 

a practical application will no doubt be helpful; in addition, it would be 
more convincing if actual recordings rather than simulations were used. 
Finally, the quantitative measurement of some quantity characterizing 
the size of the distortion detected would be welcome, especially if this 
value can be compared with a prediction. 

By using a traditional counting arrangement, it seems difficult to meet 
all these requirements. Distortions introduced are usually hard to control 
in an independent way; even their stability in time and the absence of 
any long-term drift are not readily guaranteed. For this reason, a different 
approach has been chosen. A look at.,,(l) reve'als that it is not necessary 
to intro'duce scatter by means of the detectio~ efficiency e , but that 
the same effect can also be produced by influencing the measuring rime t. 
This is much simpler to perform and it can be easily controlled. 
A particularly elegant solution then consists in using the arrival times 
of an independent Poisson process. If we define the measuring interval t 
by the time it takes to count 5 pulses from a radioactive source (realized 
by the intervals between registrations after a scale of 5), then t is a random 
quantity which is known to have a density 

--5 
§> 5-1 -It 

= (5 -1) ~ t e , for t ~ 0 1 (14) 

,.J 

where f is the count rate of the source. 
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This function is exactly of the same form as the one used in (2) for P
in constructing the model which leads to the P61ya distribution. 
Since S now takes the role of r = llb, it follows from Table A 1 that 
the re lative variance V will be given by 

36 

V = (j'2(k) = 
m

1 
(k) 

(15) 

a prediction which can be checked with actual data. In a series 
of measurements made by P. Breonce, the re lation (15) cou Id be very 
well verified. As an example, the frequencies F(k) obtained in a run 
are reproduced in Table 1. The count rate of the gamma pulses used in 
this experiment was only about 430 s-l, which ensures a negligible 
dead-time effect. The mean time interval t, after a scale factor of 
S = 1 000, was close to 0.1 s. The expected frequencies G(k) for 
a Poisson process were calculated from (3) by 

G (k) = N P m 1 (k), 

where N= 385411 and m
1 

,...., 41.02 , 

with both parameters derived from the measurements. Details of the 
electronic equipment used to accumulate the data on a multiscaler will be 
given shortly in a separate report [7J • 

The two "critical" values of k derived from (13) are k1 ..,J 35.1 and 
k2 == 47.9 and a look at Table 1 shows that the prediction of the signs 

(16) 

for the differences F - G is very good indeed: there are only five 
exceptions and three of them appear at the "crossing points" while the other 
two are in the tail of the distribution; they are all well within the statis
tical precision of the individual points. It is obvious that a correct 
prediction of the sign in 49 out of 54 cases cannot be a matter of pure 
chance and that even a smaller perturbation could have been detected 
in the availab,le data by a sign test'; tt'6'j-' the '~ihortcomings of a "symmetrical" 
test such as the well-known chi-square test, see our earlier remarks in [lJ. 
The relative variance V expected on the basis of (15), i.e. 

V ~ 1 + 41 .02/1 000 ...J 1.041 , 

is clearly in excellent agreement with the observed value 1.041 + 0.003. 



k 

-<. 11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 

Frequenc ies 
F(k) G(k) 

0 0 
2 0 
1 0 
1 6 0 
0 1 
2 2 
6 4 

13 10 
24 22 
47 44 

104 86 
182 161 
361 287 
561 491 
927 806 

1 359 1 271 
2 071 1 931 
3 129 2 828 
4 183 4 000 
5 645 5 469 
7486 7236 
9 553 9274 

11 636 11 527 
14 149 13 905 
16 217 16 295 

3 

Sign of 
difference 

F - G 

+ 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

k
1
-·-·-·_·_·_,_·-·_'-'-'-

36 18 548 18 565 + 
37 20424 20 580 
38 21 933 22 214 
39 22 849 23 362 
40 23 322 23 955 
41 23 307 23 964 
42 23 005 23 402 
43 22 106 22 322 
44 20323 20 808 

10 

k 

45 
46 
47 

Frequencies 
F(k) G (k) 

18 548 18 966 
16 625 16 911 
14 791 14 758 

Signof 
difference 

F - G 

+ 

k -.-~-~-.-~-.-,-~-~-~-,-
2 

48 12 648 12 610 + 
49 10 694 10 555 + 
50 8 786 8 659 + 
51 7253 6 964 + 
52 5 605 5 493 + 
53 4 414 4 251 + 
54 3 546 3 229 + 
55 2 605 2 408 + 
56 1 912 1 763 + 
57 1 332 1 269 + 
58 1 017 897 + 
59 698 624 + 
60 462 426 + 
61 348 287 + 
62 235 190 + 
63 136 123 + 
64 103 79 + 
65 55 50 + 
66 27 31 
67 28 19 + 
68 16 11 + 
69 6 7 
70 4 4 (zero) 
71 

,~, ~t '"'' 72',; 

i{5 ~l 73 1 5 (zero) 

~74 1 

N = 385 411 

The experimental moments are 

m 1 (k) = 41.016 ~ 0.011, 

(5'2 (k) = 42 • 71 ~ O. 1 0, 

1-'-3 (k) = 44.7+ 1 .2 • 

Table 1 - Comparison between experimental frequencies F(k) and those expected 
for a Poisson process, G(k). The observed signs of the differences F - G 
follow very well the predicted pattern. For details on this and also 
on the experimental generation of a P61ya process see text. 
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5. Some distinctions betwee n re lated processes 

The preceding discussion once more showed that the Poisson process 
is not only a most useful distribution in itself, but that it can often serve 
as a model or for comparison. It may be interesting, therefore, to have 
some simple criteria at hand which could help to decide when the use 
of the Poisson law is justified or, in the negative case, which alternative 
could possibly be applied as a better approximation. It will be obvious 
that in practice such a decision is only of real interest in those cases 
where a possible departure from the Po isson distribution is re lative Iy sma 11. 
Apart from the sign test mentioned above, other simple means for distin
guishing between similar processes exist, some of which will be sketched 
in what follows. 

Among the many possible "competitors" to the Poisson law, we confine 
ourselves (rather arbitrarily) to the binomial and the P61ya distribution. 
A first characteristic distinction is given by the value of the relative 
variance V defined in (15). Another typical feature concerns the ratio 
of successive probabilities, i.e. the quantity 

Q (k) W(k) 
- W(k-l) , k=l, 2, ••• 

This will be quickly derived for the three distributions in question •. 

Here we have the we II-known expression 

where mean and variance are given by 

~ 1 (k) = n p , (j 2,{k),,= n Pi q , 

hence V = q • 

The ratio of successive probabilities leads to the recursion formula 

(n) 
n (n-l) (n-2) (n-k+ 1) (k-1) 

Q (k) 
k .e. .e. = = 

( k: 1 ) 
q n (n-l) (n-2) (n-k+2) k ~ q 

.e. n-k+l 1 e (n+ 1) .e. = = 
q k k q q 

The reason for preferring the (apparently more complicated) last form 
will become obvious later. 

36 

(17) 

( 18) 
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k 
From W(k) = ~ ~ e -f ,with 

thus V = 1, 

we get readi Iy a Iso 

fLk 
Q(k) = 

t-t-k- 1 

I 
(k-1). = p.-

k! k 

Fro m (5 b) and Tab I e A 1, i. e • 

W(k) = pr (-;) (_q)k 

and 
0-2 (k) m 1 (k) = !:..9. and = 

p 

one obtains 

( - r ) k 
Q (k) k ( - g) = = 

(_q)k-l ( ;:1) 

!:..9. thus 2 
, 

p 

( -r-k+ 1) 
( - q) ·k 

1 
V=-

p 
, 

1 
= k q (r-l) + q 

It follows from (18) to (20) that for all the three cases considered 
Q (k) can be brought into the form 

Q(k) = A +B/k • 

. 

The cor'responding coefficients A a'ncf l are 'given in Table 2, together 
with the values for V and the special case Q(1). It is easy to show that 
in the graphical plot of Q (k) al'l the three straight lines have a common 
intersection (see Fig. 1). If we approximate Q (k) by the experimenta lIy 
available ratios F(k)/F(k-1), then, provided that the scatter in the 
frequencies is not too large, a first decision on the probability distribution 
to be used can possibly be based on such a plot of the data. 

(19) 

(20) 

(21) 
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Distribution V A B 

~ 
Q(1) 

Binomial q < 1 ~ < 0 I P (n+ 1) > {L p.-) !-L 
q q q 

Poisson 0 ~ ~ 

P61ya ! > 
p q > 0 I 

q (r-1) < P-' P\-L<'~ 

Table 2 - Summary of some characteristics of the binomial, Poisson and 
P61ya distributions, with V = 0""2 (k)/m 1 (k). The quantities A 
and B are the coefficients appearing in (21) for 

q 

o 

- P. 
q 

Q (k) = W (k)/W (k-1). 

Q (k) 

1 
·'i f-<-+ 1 

Figure 1 - Schematic plot of the ratios Q (k) = W(k)/W(k-l) 
as a function of l/k, for a P6lya, a Poisson and 
a binomial distribution with the common expectation 
va lue p" • 

l/k 

36 
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APPENDIX 

Some remarks on the moments 

For the sake of completeness, we want to indicate also briefly 
the first three moments; the corresponding results are assembled in 
Table A 1. 

Perhaps the simplest way to obtain these moments without any real effort 
of calculation is as follows. We start from (5b) and put 

.:....9.. ~ 

= P i • e • 
p 

, 
~ ,..; p + 9 Q = 1 - P = = 

p p 
, 

and r = - N • 

With these variables (5b) takes the form 

W (k) = (~) p -N (p p)k = (~) p k-N pk 

=(~)pkQN-k. 

This corresponds to a binomial distribution for which the first moments 
are known to be 

(A 1) 

(A2) 

m 1 (k) = N P, tI (k) = N P Q and (-'-'3 (k) = N P Q (Q - P) (A3) 

Hence,' by substitution of (A 1) we get for the moments of (5b) 

m (k) = !:..9. , 0-
2 

(k) = !:..9. 
1 p 2 

p 
and P--3(k) = q (1+q) 

p 
(A4) 

It is possible that this heuristic derivation will not look very convincing to 
everybody. In this case, a more satisfactory approach can be based 
for instance on the characteristic function 

(A5) 

from which the moments are obtained in the well-known way by forming 
the derivations at the origin. 



Moment 

m 1 (k) 

m
2

(k) 

m3 (k) 

0-
2 

(k) 

fL3 (k) 

v = ~ /m1 

W = P--3/m1 

eq. (:4.) 

r 
c 

r . 2" (r+ c + 1) 

I c 

r [2 2 ] c
3 

r +c +3(r+rc+c)+2 

r 2" (c + 1), 
c .~ 

! 
r 2 . 

3" (c + 3c + 2) 
c 

+..!. 
c 

(1+..!.) (1 +~) 
c c 

for the variables used in 

-I ~ 

eq. (5) 

..:..s 
p 

eq. (6) 

p-

q (1 + rq) !-l (1 + t-t + b f) 
p 

~ [1 + (3 r + 1) q + r 
2 

q 
2 

] : ~[1 + 3 P' + ~ 2 
+ 3 b p.- (1 + ~ ) + 2 b 

2 
p" 

2 
] 

P 

~ 
2 

p 

~ (1 + q) 
3 

p 

p 

~ = ~ (~- 1) 
2 p p 

p 

1 

p.-(l+bf.L) 

p.-(1 + 3bp-+2b
2 p}) 

r - - -
l+bp.-

(1 + bp..) (1 + 2b~) 

I. 

Table A 1 - The first three moments of the P61ya distribution eX.Eressed in the different variables used in eqs. (4) to (6) 

t11 

c..~ 
OJ 
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After a number of rearrangements, a general expression is obtained 
for the ordinary moments of order n = 0, 1, 2, ••• which can be brought 
(for the variables used in eq. 5) into the form 

m (k) = i S(n, j).r(j)· (9.)j, 
n j=O p 

(A6) 

where r(j) = r (r+1) (r+2) ••• (r+j-l) is a "rising" factorial 

and S(n, j) are the Stirling numbers of the second kind, to which we have 
to add the supplementary condition that 

r (0) = 1 and S (r:l, 0) = ~ O. 
n, 

We note in passing that a corresponding formula given by Fisz [8J is wrong 
(except for n = 1 and 2). 

Likewise a general expression can be found for the central moments of 
the P61yadistribution which reads 

Direct use of equations (4), (5) and (6) for obtaining the moments 
is possible, but may occasionally lead to intermediate expressions 
which call for a rather acrobatic skill in reducing them to simpler 
forms; those who feel attracted by this kind of challenge may test their 
abilities. The transition to another set of variables is no problem, 
of course. Thus, for the heuristic approach sketched above, expressions 
of the moments in the variables used in (6) can be obtained directly 
from those valid for a binomial distribution if the substitutions 

:'i 

and 
.-v 

P = -bp-' 

are used instead of (A 1). 

(A 7) 

(A8) 
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