Report on the international comparison of activity measurements of a solution of ¹³⁹Ce (March 1976)

by A. Rytz

1977

BUREAU INTERNATIONAL DES POIDS ET MESURES

F-92310 SEVRES

CONTENTS

Abstract	
1. Introduction	1
 Description of the solution and of the purity tests Decay scheme and nuclear data 	2 3
3. Adsorption tests	4
 Source preparation for measurements with proportional counters 	5
5. Liquid scintillation counting	5
6. Equipment, block diagrammes, coincidence counting data	6
7. Experimental details of special counting methods a) X _K (Nal)-γ counting (IMM) b) 2π X _L (PC)-γ counting (IMM) c) 4π Si(Li)-γ counting (NPL)	7 7 8 9
8. 4πγ measurements with a large, calibrated scintillation detector (IRK)	/ 10
9. Coincidence formulae for calculating the activity Special formulae	11 14
10. Efficiency functions, polynomial fitting	15
11. Final results, uncertainties	18
12. Slope-to-intercept ratio	18
13. Conclusion	20
Table 1 – List of the participants	22
" 2 – Summary of impurity determinations carried out by IER and LMRI	24
" 3 - Results of adsorption tests	25
" 4 – Source preparation for 4π (PC)-γ and 4π (PPC)-γ counting	g 26
" 5 – Source preparation for 4π (LS)-y counting	30
" 6 – Equipment for 4π (LS)- γ counting	31
" 7 – Equipment for 4π (PC)-y and 4π (PPC)-y counting	32
8 – Dead times and coincidence resolving time	35
" 9 – Coincidence counting data	38

Page

	Page
Table 10 – Results of χ^2 tests for the efficiency functions	41
" 11 - Final results and uncertainties	42
" 12 – Systematic uncertainty of the final result	45
Figure 1 – Specimen of reporting form	50
" 2 – A selection of equipments used by the participants	52
" 3 – Efficiency extrapolation, residuals	57
" 4 – Graphical representation of the results	63
" 5 – Distribution of the results of the radioactivity concentration	64
6 - Distribution of the values obtained for the slope- to-intercept ratio	64
" 7 - Correlation of the intercept and the slope- to-intercept ratio	65
References	66

an sign an

ii

ABSTRACT

Pursuing the programme of international comparisons of radionuclides organised by the Bureau International des Poids et Mesures, 23 national and international laboratories have measured the radioactivity concentration of samples of a solution of ¹³⁹Ce. The active material was prepared by the National Physical Research Laboratory (Pretoria) and purity-checked by the Institut d'Electrochimie et de Radiochimie de l'Ecole Polytechnique Fédérale (Lausanne) and the Laboratoire de Métrologie des Rayonnements Ionisants (Saclay). The solution was bottled and distributed by the Agence Internationale de l'Energie Atomique (Vienna) in March 1976.

In most cases a 417 proportional gas flow counter (with atmospheric or higher pressure) or a liquid scintillation counter in coincidence with a Nal scintillation counter was used. The results obtained are presented and discussed.

Details on source preparation, counting equipment and data analysing are reported in tabular or graphical form. Special attention is given to the formulae used, the corrections applied and the uncertainties assessed.

1. INTRODUCTION

In 1970 it was decided $\begin{bmatrix} 1 \end{bmatrix}$ to suspend the programme of international comparisons organised under the aegis of the Bureau International des Poids et Mesures (BIPM) for a period. As the spread of the results obtained had not decreased as much as expected, Section II (Mesure des Radionucléides) of the Comité Consultatif pour les Etalons de Mesure des Rayonnements Ionisants (CCEMRI) expressed the view that the expenditure of effort on full scale comparisons was too large considering their low efficiency. In the meantime several Working Parties had been formed in order to study some special problems related to the measurement of activity. The results of some of these studies have been published (see e.g. [2, 3]); others are still in progress. It may be expected that these publications will help to avoid some experimental pitfalls and to improve the accuracy of future results. In addition, a special working party was charged with the choice of radionuclides and the preparation of future comparisons. Five proposals made by this group were submitted to the members of Section II whose answers led to the following in decreasing order of preference: ¹³⁹Ce, ¹³⁴Cs, ⁵⁷Co, ²⁴¹Am, ³⁵S. Preliminary comparisons with a reduced number of participants [4, 5, 6] were organised for the first three of these radionuclides; they permitted to clarify certain problems and to work out an appropriate reporting form. Previous international comparisons had already well demonstrated how important such details can be for the success of the whole enterprise.

The forms to be used for the present comparison were distributed to the participants in December 1975 (see specimen, Fig. 1) along with some instructions and remarks. The reference date had been fixed as 1976-03-15, 00 h UT.

In a preliminary report [7] the results and the most important data submitted by twenty participants have been circulated (1976–07–15). Three more results arrived a few weeks later. The list of the participants is reproduced in Table 1.

2. DESCRIPTION OF THE SOLUTION AND OF THE PURITY TESTS

The primary ¹³⁹Ce was produced [8] by bombardment of a lanthanum target with 16 MeV deuterons, at the NPRL*, according to the reaction

¹³⁹La(d, 2n)¹³⁹Ce.

After bombardment the active surface layer was shaven off and 139 Ce separated by a solvent extraction method [9]. The cerium was then reduced to the trivalent state, back extracted into an aqueous phase and evaporated to dryness. After destruction of the remaining organic material by evaporation with concentrated HNO₃, the cerium was taken up in diluted hydrochloric acid (1 mol HCl in 1 dm³ of H₂O).

Much attention was paid to extensive purity tests and to the choice of the composition of the solution to be distributed.

Samples from a test run were sent to IER and LMRI in May 1975. Each sample contained about 10^8 Bq of 139 Ce, carrier free in about 1 cm³ of diluted HCI. These two laboratories carried out purity tests by γ -ray spectrometry (Ge(Li) and superpure Ge detectors), β -ray spectroscopy, half-life measurement and determination of the slope/intercept ratio by 4π (PC)- γ counting. Similar checks were made by the same two laboratories, eight months later, with samples from the main run. Each laboratory sent comprehensive reports on their measurements to the BIPM in October 1975 and February 1976.

The results of these purity tests were slightly different from one run to the other and from one laboratory to the other. Nevertheless, these were minor differences, and the radionuclidic purity of the ¹³⁹Ce could be considered as sufficient in each case.

^{*} The full names of the laboratories can be found in Table 1.

Table 2 gives a summary of the results obtained. By far the most important contamination is due to ¹⁴¹Ce, not detected by IER because of too low a sensitivity of their particular equipment. However, the activity ratio, at the reference date of the comparison (1976-03-15), was $A_{141}/A_{139} = 1.6 \times 10^{-4}$, i.e. still negligible, at least for activity measurements.

The dilution of the main bulk to about 700 kBq \cdot g⁻¹, the addition of the carrier, the bottling of the solution and the dispatch of the samples were carried out by the AIEA at Seibersdorf (near Vienna).

In the first week of March 1976, each participant received two ampoules (type NBS) containing each about 3.5 g of solution. The chemical composition was 20 μ g of CeCl₃ per gramme of an aqueous solution of 0.2 mol HCl in 1 000 cm³. The mass of each sample had been determined by AIEA to \pm 10 μ g in order to make possible certain adsorption tests.

Decay scheme and nuclear data

The following data have been recommended for use to all the participants prior to the comparison.

 $T_{1/2} = (137.65 \pm 0.07) d [10]$

Energies of the radiations emitted: X rays mostly 33 and 38 keV, Auger electrons ∠ 37 keV, y rays 165.8 keV, conversion electrons ≥ 127 keV, (total conversion coefficient $\propto tot \approx 0.25$).

3. ADSORPTION TESTS

Although the chemical composition of the solution distributed had been chosen so as to prevent adsorption at the walls of the glass ampoules, the following three procedures have been suggested by the Working Party in order to evaluate upper limits, using ion chamber measurements.

- 1. Comparison of the radioactivity concentration in the pycnometer before and after dispensing the sources.
- 2. Comparison of the solution in the original ampoule before breaking the seal to
 - a) that part of the original solution which was left after source preparation and transfer to a new ampoule of the same type (for this purpose each participant had also received two empty ampoules),
 - b) the small amount not extracted from the original ampoule.In 2a) and b) diluant had to be added in order to get the same volume of liquid as originally present.

Table 3 gives a summary of the results obtained. The methods 1) and 2a) being rather similar, they are not quoted separately. Method 2b) was not very sensitive, due to the low energy of the y rays and the small amount of activity left in the original ampoules. As to method 2a), the precision seems to be quite good. However, the fact that NPL and BIPM found "negative adsorption" of nearly 0.1% suggests the presence of systematic errors of this order of magnitude. Thus, to this order of accuracy it seems unlikely that significant adsorption took place. The result obtained by ASMW deserves attention but does not seem to have influenced the final result of this laboratory.

4. SOURCE PREPARATION FOR MEASUREMENTS WITH PROPORTIONAL COUNTERS

All the information contained in the individual forms has been condensed in Table 4 which is self-explanatory.

The column headed "Range of N_c/N_γ " gives the range of efficiency of the proportional counter to Auger electrons and X rays. It deserves special attention, since high efficiency is always an advantage. As there is no clear correlation between the application of certain seeding or spreading agents and the highest efficiency obtained, the skill of the operator seems to be more important than the particular treatment applied.

The most frequently used backing material is metal-plated VYNS. One laboratory (SCK) dispensed sources on non-metallized VYNS films and compared, in a later experiment, ⁶⁰Co sources on metallized films with sources on non-metallized ones. Although practically no difference in radioactivity concentration was found, it is evident that the results obtained by SCK contain a large systematic error which may be due to charging-up of the sources. Therefore it was decided to withdraw them from Table 11 and Figures 4, 5 and 6.

5. LIQUID SCINTILLATION COUNTING

Only three laboratories have used 4π (LS)- γ counting in this comparison. Source preparation and equipment are described in Tables 5 and 6. Various procedures for varying N_c/N_{γ} were applied and the quality of the results obtained differed considerably from one laboratory to the other.

The three different gates in the γ channel used by IBJ (Table 9 and [7]) gave widely different and incompatible results. However, further experiments carried out by this laboratory showed that the highest and the lowest results are in error due to an excess and a loss, respectively, of coincidences. Therefore, only the intermediate result has been maintained.

As the result reported first by NPRL [7] was high by 1.0 to 1.5 %, this laboratory further investigated the performance of its equipment. It appeared that, despite the use in coincidence of two photomultiplier tubes in the 4TT (LS) detector, spurious pulses had not been eliminated sufficiently. Therefore, two variations of the so-called gating technique [3] were applied for determining the probability for the production of spurious pulses. It could be shown [11] that a correction of (1.3 ± 0.2) % has to be applied. This brings the result of NPRL down to a value in close agreement with others.

The special equipment used at NPL allowed a more sophisticated extrapolation procedure, which is described in [12], to be applied. A single γ window over the photopeak or a wide γ window from 50 keV to above the photopeak did not yield a satisfactory polynomial fit of the efficiency function. However, the simultaneous use of two windows, one over the photopeak, the other below and excluding the photopeak, gave a good fit. The correlation of the data points has been accounted for in a special fitting procedure. However, a relatively high systematic uncertainty (1.5%) subsisted. Correlation counting was used in order to estimate the upper limit of the spurious pulse rate (cf. [3]).

6. EQUIPMENT, BLOCK DIAGRAMMES, COINCIDENCE-COUNTING DATA

Details of the counting equipment as reported by the participants are described in Tables 6 and 7. Table 8 lists all the data concerning dead times, resolving times and the methods used for their determination.

Many participants have supplied block diagrammes of their electronic system (see Fig. 2). Others have quoted the corresponding references which may be found in Tables 7 and 8.

As is well known, a relative delay between β and γ channels can change the coincidence rate ("Gandy effect"). Such delays have been measured, but were found to be certainly less than 0.5 µs and often much shorter. The corresponding corrections applied to the final results are given in Table 9. The methods used for determining or eliminating the delay are described in [13] and [14].

7. EXPERIMENTAL DETAILS OF SPECIAL COINCIDENCE-COUNTING METHODS

Two laboratories have, in addition, made use of three methods, the description of which did not fit into the preceding tables. Therefore, they are summarized separately hereafter.

1

a) X_{K} (Nal)- γ counting (IMM)

	X channel	γ channel			
Nal(TI) crystal (mm)	d = 30, h = 2	d = 30, h = 20			
Background rate (s ⁻¹)	0.16	$ _{B_{c}} = 0$			
Dead time (µs)	2.34 ± 0.05	2.34 ± 0.05			
Resolving time (μ s)	0.915 <u>+</u> 0.007				
	1.475	+ 0.010			

Thirteen sources were measured during 1 000 s for each data point. The activity A was calculated as follows:

A = N_o
$$\frac{P_{K}}{P_{K}^{+\alpha} \kappa/(1+\alpha_{K})}$$
 = N_o/1.232 8 (from Nucl. Data Sheets 12, 2 (1974)),

where

N_o = activity calculated by means of Campion's formula, P_K = K capture probability, ¤_K = K shell conversion coefficient. Components of systematic uncertainty:

weighing dead-time corre resolving time afterpulses constants (decay	ction scheme)	0.05 % 0.005 0.02 0.05 0.7
	to ta l	0.7%

b) $2\pi X_{I}$ (PC)- γ counting (IMM)

L X-ray detector: semi-cylindrical 2π proportional counter made of aluminium, d = 180 mm, 1 = 80 mm; anode: constantan, d = 0.1 mm, 1 = 125 mm, distance from source 35 mm; 2.3 kV; Ar/CH₄ at atmospheric pressure, discrimination level 100 eV.
γ-ray detector: one Nal(Tl) crystal, d = 40 mm, h = 30 mm.
Dead times (μs): τ_x = τ_y = 2.34 ± 0.05
Resolving time (μs): τ_r = 1.475 ± 0.010
2.08 ± 0.01.

- Background rates (s^{-1}) : $B_x = 2$, $B_\gamma = 5$, $B_c = 0$.

 $A = N_{o}(1 + \frac{n_{K} \cdot n_{KL} + n_{L}}{P_{K} \cdot n_{K} + P_{L}}) = N_{o}/1.216 \quad (\text{see Nucl. Data Sheets}),$

where

 N_{o} = calculated activity,

 $n_{K}(n_{L})$ = relative number of K(L)-shell vacancies resulting from internal conversion of γ quanta,

n_{KL} = relative number of L-shell vacancies resulting from the formation of a K-shell vacancy,

 $P_{K}(P_{I}) = K(L)$ capture probability.

Thirteen sources were measured during 1 000 s for each data point.

Components of systematic uncertainty:

weighing	0.05 %
dead-time correction	0.005
resolving time	0.02
background	0.005
afterpulses	0.05
constants (decay scheme)	0.8
to ta l	0.8 %

c) 4π Si(Li)- γ counting (NPL)

4π detector: Li-drifted Si detector at 77 K, thickness (each half) 3 mm, radius 8 mm, active area 200 mm², depletion depth 3.0 mm, window thickness ≥ 0.2 μm (50 μg · cm⁻²), detector-source separation 0.13 mm, pressure 1.3 mPa, voltage 700 V.

γ-ray detector: three Nal crystals (one well type), diameter 76 (well 102) mm,
 height 76 (well 152) mm.

Dead time

and resolving time (µs): $\tau_{\beta} = 8.00 \pm 0.01$, $\tau_{\gamma} = 6.01 \pm 0.02$, $\tau_{r} = 2.95 \pm 0.05$.

Background rates (s⁻¹): $B_{\beta} = 1.3$, $B_{\gamma} = 1.0$ and 1.9, $B_{c} = 0.03$. Ten sources (16 to 21 mg) on AI backings (200 μ g · cm⁻²) were prepared; 23 data points (1 000 s each) from seven sources were used for extrapolation. N_{c}/N_{γ} was varied from 48 to 2% by computer discrimination. Data points were calculated using the same formulae as for $4\Re(LS)-\gamma$ counting. Uncertainties in N_{c}/N_{γ} have been considered.

The residuals (Fig. 3) showed a large trend of unknown origin.

8. $4\pi\gamma$ MEASUREMENTS WITH A LARGE CALIBRATED SCINTILLATION DETECTOR (IRK)

The results obtained by this laboratory are not considered to be "absolute" in the same way as is generally accepted for coincidence measurements. Nevertheless, the method summarized here is about midway between absolute and relative.

Source preparation

The total content of ampoule n^o 3 was diluted with a diluent of the same composition (dilution factor = 28.076). A new (1975) Mettler balance type P 163 was used for determining the mass of the diluent.

Drops of 14 to 35 mg of the dilution were dispensed onto each of seven backings of diameter 18 mm and thickness 0.1 mm by means of a pycnometer. The source mass was determined simultaneously by differential weighing of the pycnometer and by the evaporation method. For the first method a Mettler balance type H 16 was used which had previously been recalibrated and checked for scale linearity. The samples were placed on the pan of a fast electronic microbalance (Perkin Elmer AD-2) with digital display. Several tens of readings were taken from 15 s until 8 min after dispensing, and extrapolated to zero time. Only those four sources were counted for which both weighings agreed within 40 µg.

The detector was a Nal(Tl) well crystal, d = h = 127 mm, well diameter 27 mm, depth 74 mm, mounted on a RCA 8055 photomultiplier ([15]). Integral counting above 13 keV was carried out with a dead time of $(10.3 \pm 0.2) \mu$ s. The measurements took place from April 26 to April 28; each sample was counted twice and the total counting time was 8 000 s. The count rates ranged from 340 to 740 s⁻¹. The background rate (of about 52 s⁻¹) was measured with a sample prepared from a drop of diluent, before and after each source was counted. The calculated efficiency [16] was 0.952 + 0.005.

9. COINCIDENCE FORMULAE FOR CALCULATING THE ACTIVITY

Since a rigorous method for computing the sample activity from the observed count rates is still lacking, various approximate forms have been employed. A recent article by Cox and Isham [23] gives the solution which is exact under certain conditions^{*}. The formulae used by the participants are mostly derived from those developed by Campion [17] or by Bryant [18]. It can be seen that the differences between the various expressions are often due to second-order terms or to the way in which background is corrected for. Moreover, some participants have taken into account delay offset or unequal pulse lengths in the two channels. In what follows the decay-scheme-dependent correction will not be considered.

About one half of the participants have used a formula stemming from the well-known paper by Campion [17] and which may also be found in [19] and [20]:

$$N_{o} = \frac{N_{\beta} N_{\gamma} \left[1 - \tau_{r} (N_{\beta}^{i} + N_{\gamma}^{i})\right]}{(N_{c} - 2 \tau_{r} N_{\beta}^{i} N_{\gamma}^{i}) (1 - \tau^{i} N_{c}^{i})} , \qquad \tau_{c} < \tau^{i} .$$

The symbols used here and later on have the following meaning:

This formula was used by AAEC, BARC, BIPM, ETL, IEA, IER, IMM, OMH and SCK, while PTB added a delay-offset term according to Gandy's theory [21].

* For practical implementation, see D. Smith, Improved correction formulae for coincidence counting (Nucl. Instr. and Meth., in press). Slightly different forms also used were

ASMW:
$$N_{o} = \frac{N_{\beta}N_{\gamma}}{N_{c}} \cdot \frac{1 + \tau_{r} \left[2 \frac{N_{\beta}N_{\gamma}}{N_{c}} - (N_{\beta} + N_{\gamma}) \right]}{1 - \tau N_{c}}, \tau_{\beta} = \tau_{\gamma} = \tau,$$

NPRL :
$$N_{o} = \frac{N_{\beta}N_{\gamma}}{N_{c}} \left[1 + \tau'N_{c} + 2\tau_{r}\frac{N_{\beta}N_{\gamma}}{N_{c}} - \tau_{r}(N_{\beta} + N_{\gamma}) \right],$$

$$UVVVR: \qquad N_{o} = \frac{N_{\beta}N_{\gamma}}{N_{c}} \left[1 + 2\tau_{r}\frac{N_{\beta}N_{\gamma}}{N_{c}} - \tau_{r}(N_{\beta} - N_{\gamma})\right] (1 + \tau_{\gamma}N_{c}^{\prime}).$$

Seven participants have reported formulae derived from equations (4) or (6) given in [18]. As there are some small differences, mainly in the way the background is corrected for, we reproduce here all the expressions indicated by the participants concerned. Additional symbols appearing are

- $\theta_{\beta} , \theta_{\gamma}$ duration of pulses from β and γ channels, respectively, arriving at the coincidence mixer; one has always $\theta_{\beta} + \theta_{\gamma} = 2 \tau_{r},$
 - delay between β and γ channels, positive when the β channel is delayed,
- N_{β}^{*} , N_{γ}^{*} , N_{c}^{*} count rates corrected for dead time and background rate of genuine coincidences,

 B'_{β} , B'_{γ} , B'_{c} observed background count rates,

Q'

Q

δ

- ratio of coincidence to γ-channel count rates, both rates being corrected for dead time and resolving time,
- ratio of coincidences to γ-channel count rates, both rates being corrected for dead time, resolving time and background.

- following eq. (6) in [18] :

$$\begin{aligned} \text{A1EA:} \quad N_{c}^{*} &= \frac{N_{c}^{*} - 2 \ \tau_{r} \ N_{\beta}^{*} \ N_{\gamma}^{'}}{\left[1 - \tau_{r} (N_{\beta}^{*} + N_{\gamma}^{*})\right] \left[1 - \tau_{\gamma} (N_{\gamma}^{*} - N_{c}^{*})\right] (1 - \tau_{\beta} \ N_{\beta}^{*})} - B_{c}^{*}, \quad N_{o}^{*} &= \frac{N_{\beta} \ N_{\gamma}}{N_{c}^{*}} \ . \end{aligned}$$

$$\begin{aligned} \text{BCMN:} \quad N_{o}^{*} &= \frac{N_{\beta} \ N_{\gamma} (1 - \tau_{\beta} \ N_{\beta}^{*} - \tau_{\gamma} \ N_{\gamma}^{*} + \tau^{*} \ N_{c}^{*}) \left[1 - \tau_{r} (N_{\beta}^{*} + N_{\gamma}^{*})\right]}{(N_{c}^{*} - 2 \ \tau_{r} \ N_{\beta}^{*} \ N_{\gamma}^{*}) (1 - \tau_{\beta} \ N_{\beta}^{*}) (1 - \tau_{\gamma} \ N_{\gamma}^{*})} \ , \qquad (\text{see [22]}) \ . \end{aligned}$$

$$\begin{aligned} \text{NPL:} \\ \text{4}\pi(\text{PC})_{-\gamma}^{*} \ N_{o}^{*} &= \frac{N_{\beta} \ N_{\gamma} (1 - \tau_{\beta} \ N_{\beta}^{*} - \tau_{\gamma} \ N_{\gamma}^{*} + \tau^{*} \ N_{c}^{*}) \left[1 - \tau_{r} (N_{\beta}^{*} + N_{\gamma}^{*})\right]}{(N_{c}^{*} - 2 \ \tau_{r} \ N_{\beta}^{*} \ N_{\gamma}^{*}) (1 - \tau_{\beta} \ N_{\beta}^{*}) (1 - \tau_{\gamma} \ N_{\gamma}^{*})} \ . \end{aligned}$$

- following eq. (4) in [18] :

$$\begin{array}{l} \text{AECL:} \left\{ \begin{array}{l} N_{\beta}^{*} = \frac{N_{\beta}^{i}}{1 - \overline{\tau_{\beta}} N_{\beta}^{i}} - B_{\beta}^{i} \frac{1}{\gamma}, \quad N_{\gamma}^{*} = \frac{N_{\gamma}^{i}}{1 - \overline{\tau_{\gamma}} N_{\gamma}^{i}} - B_{\gamma}^{i} \frac{1}{\gamma}, \quad N_{o} = \frac{N_{\beta}^{*} N_{\gamma}^{*}}{N_{c}^{*}} \\ N_{c}^{*} = \frac{\left[N_{c}^{i} - (\theta_{\beta} + \theta_{\gamma}) N_{\beta}^{i} N_{\gamma}^{i}\right] (2 - \overline{\tau_{\beta}} N_{\beta}^{i} - \overline{\tau_{\gamma}} N_{\gamma}^{i})}{\left[2 - \overline{\tau_{\beta}} N_{\beta}^{i} - \overline{\tau_{\gamma}} N_{\gamma}^{i} + 2 \overline{\tau}^{i} N_{c}^{i} - 2 (\theta_{\gamma} N_{\beta}^{i} + \theta_{\beta} N_{\gamma}^{i}) + 2 \delta (N_{\beta}^{i} - N_{\gamma}^{i})\right] (1 - \overline{\tau_{\beta}} N_{\beta}^{i}) (1 - \overline{\tau_{\gamma}} N_{\gamma}^{i})}{\left[1 - \overline{\tau_{\gamma}} N_{\gamma}^{i}\right]} - B_{c}^{i} \\ \text{LMRI:} \quad N_{o} = \frac{N_{\beta} N_{\gamma}}{N_{c}^{i} - 2 \overline{\tau_{r}} N_{\beta}^{i} N_{\gamma}^{i}} \left[1 + \frac{2 \overline{\tau} N_{c}^{i} - 2 \overline{\tau_{r}} (N_{\beta}^{i} + N_{\gamma}^{i})}{2 - \overline{\tau} (N_{\beta}^{i} + N_{\gamma}^{i})}\right], \quad \text{with} \quad \overline{\tau_{\beta}} = \overline{\tau_{\gamma}} = \overline{\tau} , \quad \overline{\tau_{r}} < \overline{\tau}/2 \\ \text{NBS}_{and} \\ \text{NRC:} \quad \left(\begin{array}{c} Q^{i} = \frac{(N_{c}^{i} - 2 \overline{\tau_{r}} N_{\beta}^{i} N_{\gamma}^{i}}{1 - \frac{\overline{\tau}}{2} (N_{\beta}^{i} + N_{\gamma}^{i} - 2 N_{c}^{i}) - \overline{\tau_{r}}^{i} (N_{\beta}^{i} + N_{\gamma}^{i})}\right], \quad \overline{\tau_{\beta}} = \overline{\tau_{\gamma}} = \overline{\tau} \\ Q = \frac{Q^{i} - B_{c}^{i} / N_{\gamma}^{i}}{1 - B_{\gamma}^{i} / N_{\gamma}^{i}}, \quad N_{o} = \frac{\left[N_{\beta}^{i} / (1 - \overline{\tau} N_{\beta}^{i})\right] - B_{\beta}^{i}}{Q} \\ \end{array} \right. \end{array}$$

lΩ

Special formulae

$$\begin{split} &\mathsf{IPA} \text{ used a formula which contains also higher-order terms in \mathbb{T} and \mathbb{T}_{r}, with $\mathbb{T} = \mathbb{T}_{\beta} = \mathbb{T}_{\gamma}$;} \\ &\mathsf{N}_{c}^{*} = \frac{(\mathsf{N}_{c}^{*} - \mathsf{B}_{c}^{*}) \left[1 + \mathbb{T}\left(\frac{\mathsf{N}_{\beta}^{*}}{1 - \mathbb{T}\mathsf{N}_{\beta}^{*}} + \frac{\mathsf{N}_{\gamma}^{*}}{1 - \mathbb{T}\mathsf{N}_{\gamma}^{*}}\right) - \mathbb{T}^{2} \frac{\mathsf{N}_{\beta}^{*}}{1 - \mathbb{T}\mathsf{N}_{\gamma}^{*}} \cdot \frac{\mathsf{N}_{\gamma}^{*}}{1 - \mathbb{T}\mathsf{N}_{\gamma}^{*}}\right] - 2 \ \mathbb{T}_{r} \frac{\mathsf{N}_{\beta}^{*}}{1 - \mathbb{T}\mathsf{N}_{\beta}^{*}} \cdot \frac{\mathsf{N}_{\gamma}^{*}}{1 - \mathbb{T}\mathsf{N}_{\gamma}^{*}}}{1 + (\mathsf{N}_{c}^{*} - \mathsf{B}_{c}^{*})^{*} \mathbb{T} \left[1 + \frac{\mathbb{T}}{2}\left(\frac{\mathsf{N}_{\beta}^{*}}{1 - \mathbb{T}\mathsf{N}_{\beta}^{*}} + \frac{\mathsf{N}_{\gamma}^{*}}{1 - \mathbb{T}\mathsf{N}_{\gamma}^{*}}\right)\right] - \mathbb{T}_{r} \left(\frac{\mathsf{N}_{\beta}^{*}}{1 - \mathbb{T}\mathsf{N}_{\gamma}^{*}} + \frac{\mathsf{N}_{\gamma}^{*}}{1 - \mathbb{T}\mathsf{N}_{\gamma}^{*}}\right) + \frac{\mathbb{T}_{2}^{*}}{2} \left(\frac{\mathsf{N}_{\beta}^{*}}{1 - \mathbb{T}\mathsf{N}_{\beta}^{*}} - \frac{\mathsf{N}_{\gamma}^{*}}{1 - \mathbb{T}\mathsf{N}_{\gamma}^{*}}\right)^{*}}{\mathsf{N}_{\beta}^{*}} = \frac{\mathsf{N}_{\beta}^{*}}{1 - \mathbb{T}\mathsf{N}_{\beta}^{*}} - \mathsf{R}_{\beta}^{*}, \qquad \mathsf{N}_{\gamma}^{*} = \frac{\mathsf{N}_{\gamma}^{*}}{1 - \mathbb{T}\mathsf{N}_{\gamma}^{*}} - \mathsf{B}_{\gamma}^{*}. \end{split}$$
For its set-up with three photomultipliers (see Fig. 2), IBJ developed the following expression
$$\mathsf{N}_{\beta} = \mathsf{N}_{K1} = \frac{\mathsf{N}_{K1}^{*}}{1 - \mathbb{T}_{\beta1}} \frac{\mathsf{N}_{\beta1}^{*} - \mathbb{T}_{\beta2}}{\mathsf{N}_{\beta2}^{*} + \mathbb{T}_{\beta\min}} \mathsf{N}_{K1}^{*}} - \mathsf{B}_{K1}^{*}, \qquad \mathsf{N}_{\gamma} = \frac{\mathsf{N}_{\gamma}^{*}}{1 - \mathbb{T}_{\gamma}} \mathsf{N}_{\gamma}^{*} - \mathsf{B}_{\gamma}^{*}, \\\\\mathsf{N}_{c}^{*} = \mathsf{N}_{K2} = \frac{\mathsf{N}_{K2}^{*}}{\frac{1 - \mathbb{T}_{\beta1}} \frac{\mathsf{N}_{\beta1}^{*} - \mathbb{T}_{\beta2}}{\mathsf{N}_{\beta2}^{*} - \mathbb{T}_{\gamma}} \mathsf{N}_{\gamma}^{*} + \mathbb{T}_{\beta\min}} \mathsf{N}_{K1}^{*} + \mathbb{T}_{\min}} \mathsf{N}_{K2}^{*}} - 2 \mathbb{T}_{r} \mathsf{N}_{\gamma}^{*} \mathsf{N}_{K1}^{*}}{1 - \mathbb{T}_{\gamma}} \mathsf{N}_{\gamma}^{*} - \mathsf{B}_{K2}^{*}, \end{cases}$$

where

$$\hat{\tau}_{\beta \min}$$
 is the shorter of $\hat{\tau}_{\beta 1}$ or $\hat{\tau}_{\beta 2}$,
 $\hat{\tau}_{\min}$ is the shorter of $\hat{\tau}_{\beta 1}$, $\hat{\tau}_{\beta 2}$ or $\hat{\tau}_{\gamma}$.

With both methods, $4\pi(LS)-\gamma$ and $4\pi Si(Li)-\gamma$, NPL used the same formula:

$$N_{o} = \frac{N_{\beta}N_{\gamma}}{N_{c} - 2\tau_{r}N_{\beta}'N_{\gamma}'} \cdot \frac{\left[\overline{1} - \tau_{r}(N_{\gamma}' + N_{\beta}'tot)\right]\left(1 - \tau_{\beta}N_{\beta}'tot - \tau_{\gamma}N_{\gamma}' + \tau_{\gamma}N_{c}'tot\right)}{\left(1 - \tau_{\beta}N_{\beta}'tot\right)\left(1 - \tau_{\gamma}N_{\gamma}'\right)} \cdot \frac{\left[\overline{1} - \tau_{r}(N_{\gamma}' + N_{\beta}'tot)\right]\left(1 - \tau_{\gamma}N_{\gamma}'\right)}{\left(1 - \tau_{\beta}N_{\beta}'tot\right)\left(1 - \tau_{\gamma}N_{\gamma}'\right)}$$

Here

 N_{β}^{\prime} and N_{c}^{\prime} refer to the count rates above a chosen β energy,

N' and N' are the rates over all β energies [12]. The equation refers to one γ window and becomes more complicated where two windows are employed.

Finally, we mention the formulae developed by NRC for the anticoincidence method $\lceil 24 \rceil$:

$$N_{\beta} = \frac{C_{\beta} - A}{t'} - B_{\beta}', \qquad N_{\gamma} = \frac{C_{\gamma}}{t - C_{\gamma} \tau_{\gamma}} - B_{\gamma}',$$
$$A = \frac{C_{\beta} C_{\gamma} \delta}{t' + \delta (C_{\beta} + C_{\gamma})}, \qquad N_{y} = \frac{C_{\gamma} - A}{t'} - B_{\gamma}'.$$

Here

 C_β , C_γ , C_γ are the accumulated counts in the $\beta,\,\gamma$ and Y channels, respectively (see Fig. 2),

A is the number of accidental events in the β or Y channels,
t = real time,
t¹ = live time,

 δ = delay gap (\approx 13 ns).

10. EFFICIENCY FUNCTIONS, POLYNOMIAL FITTING

The simplicity of the ¹³⁹Ce decay scheme makes this radionuclide especially well suited for coincidence counting with efficiency extrapolation. This fact and the absence of particular difficulties (as e.g. impurities, insoluble salts) have already been realized on the occasion of the preliminary comparison organized by the BIPM [5] in 1974. Experimental and theoretical justification of the extrapolation method has been discussed in detail [25] and systematic errors are likely to be rather small.

The efficiency function has been approximated by a polynomial $y = a_0 + a_1 + a_2 + a_2 + \dots$, when expressed in the coordinates $y = \frac{N_\beta N_\gamma}{m N_c}$ and $x = \frac{1 - N_c / N_\gamma}{N_c / N_\gamma}$, where the count rates are the same as

in the preceding section and m is the source mass.

The methods used for varying N_c/N_γ , the efficiency of the 417 counter, are indicated in Table 4, where it may be seen that, besides counting gas variation, self-absorption, foil absorption and threshold level variation were applied. Self-absorption may be varied by redissolving a source and adding inactive carrier or by using several sources of different mass. The latter procedure is simpler but less reliable, since individual efficiency functions may differ from each other. However, no such difference has been reported. The coefficients a_0 , a_1 , a_2 , ..., have been least-squares fitted to the data points (x, y) in the well-known manner.

The graphical representation of the residuals of the data points obtained from the various participants are reproduced in Fig. 3.

As one could expect, the efficiency functions turned out to be very nearly linear in most cases. The majority of the participants have also calculated second-order fits. However, the ratio a_2/a_1 seldom exceeded 0.002 5; in a single case (LMRI) it was as high as 0.012. Third and higher orders could always be neglected.

The order of the "best fit" can be determined by comparing the results of χ^2 tests from adjustments of different orders. Such tests have been reported by the participants and are listed in Table 10.

In the graphical representation of the efficiency function, the variables x and y are in general correlated and this should be accounted for in the calculation of the variance and the statistical weights.

In fact, if for ¹³⁹Ce the measurement of a data point corresponding to a fairly low efficiency, N_c/N_γ , is repeated a large number of times and plotted in a y(x) diagram, the correlation becomes obvious [26].

The estimation of the residual and its variance has been treated by Adams and Baerg and by Baerg [27]. Recently, Merritt et al. [29] have applied this approach to the case of a linear efficiency function $y' = y_0 (1 + Kx)$, where the intercept y_0 and the slope K are estimated from a preliminary fit (using e.g. equal weights). A better estimate of the weight will then be given by the inverse variance of the residual r'. One has, with m = source mass and $x = \frac{1 - N_c / N_\gamma}{N_c / N_\gamma}$: $r' = N_\beta N_\gamma / (m N_c) - y_0 (1 + Kx) = \frac{1}{m} \left[N_c + X + Y + (X Y / N_c) - my_0 - (my_0 K Y / N_c) \right]$. Here $X = N_\beta - N_c$ and $Y = N_\gamma - N_c$ are the non-coincident count rates,

$$\sigma_{r'}^{2} = (\partial r'/\partial N_{c})^{2} \sigma_{N_{c}}^{2} + (\partial r'/\partial X)^{2} \sigma_{X}^{2} + (\partial r'/\partial Y)^{2} \sigma_{Y}^{2}.$$

Remembering that $\sigma_{N_c}^2 = N_c/t$, $\sigma_X^2 = X/t$, $\sigma_Y^2 = Y/t$ (t = count duration) and putting W = $N_{\beta} - N_c - (my_{\delta} K/D)$, where D is the decay correction to the reference time, one gets finally

$$\sigma_{y}^{2} = D^{2} \sigma_{r'}^{2} = \left\{ \left[1 - (Y W/N_{c}^{2}) \right]^{2} N_{c} + \left[1 + (Y/N_{c}) \right]^{2} X + \left[1 + (W/N_{c}) \right]^{2} Y \right\} D^{2} / (m^{2}t) .$$

For a well-designed experiment (i.e. with a reasonable distribution of points having comparable statistical accuracies), the computed value of the slope and intercept will not be sensitive to the choice of weights. The proper choice of weights may, however, yield significantly better estimates for the variances of the parameters and is essential if a meaningful value of χ^2 is required (cf. A.P. Baerg, references 6 and 7 in [27]). A second iteration using the new values of the parameters to recalculate $\sigma_{r'}^2$ for each data point is unlikely to be worthwhile because the variance estimates for the individual points are relatively insensitive to small changes in the parameters.

11. FINAL RESULTS, UNCERTAINTIES

The extrapolation to 100% efficiency N_c/N_γ leads to an intercept a_o with the ordinate y which represents the <u>radioactivity concentration</u> of the solution considered. The fitting procedure also includes the calculation of the <u>standard error of the mean</u>. The number of degrees of freedom (in general the number of data points used minus the number of coefficients a_o , a_1 , ... fitted) helps then to define the random uncertainty of the final result. Eight participants have also taken into account the uncertainty in x (Table 9); the effect on the final result was always smaller than one part in 10^3 .

The final results, as well as the random and total systematic uncertainties, are listed in Table 11. A graphical representation is given in Fig. 4 and a histogramme of the distribution in Fig. 5.

The various contributions to the estimated <u>systematic uncertainties</u> are listed in Table 12, where it is also explained how they were obtained. The way of combining them is not of great importance in the present case, since one of them is almost always by far the largest. Usually the linear sum was taken.

The largest contribution to systematic uncertainty is the one which is due to the extrapolation procedure. Most participants put it equal to the difference in a_o between first- and second-order fits. This difference and the corresponding estimate by the participant are listed separately.

12. SLOPE-TO-INTERCEPT RATIO

The slope a₁ of the efficiency function near to the intercept divided by a₀ is an important parameter, since it depends in a simple way on the total internal conversion coefficient of the daughter atom and is, at least approximately, independent of the counting apparatus. However, the histogramme of Fig. 6 shows a considerably larger spread than that of Fig. 5. As is evidenced by Fig. 7, the intercept and the slope are correlated, although not in a very clear way.

The slope-to-intercept ratio a_1/a_0 is related to the total internal conversion coefficient \propto according to [30]

$$a_{1}/a_{o} = \frac{\varepsilon_{\beta\gamma} - \rho_{c}}{1 + \alpha} + \frac{\alpha}{1 + \alpha} \left[\varepsilon_{e} + (1 - \varepsilon_{e}) \varepsilon_{X} \right],$$

where

E_{βγ} is the efficiency of the "β" counter to 166 keV γ rays,
E_e " " ≥127 keV electrons,
E_χ " " X rays or Auger electrons,
p_c is the probability for registering a coincidence event when the electron capture event is not registered in the "β" counter.

It is generally assumed that \mathcal{E}_{e} is close to unity and p_{c} negligible. Thus $\alpha + \mathcal{E}$

$$a_1/a_0 \approx \frac{\alpha + c_{\beta\gamma}}{1 + \alpha}$$

 \sim

The efficiency $\mathcal{E}_{\beta\gamma}$ is difficult to measure accurately. Merritt and Taylor [31] found that it is small and not strongly dependent on the size, shape or material of the cathode. From the work of Urquhart [32] or of Williams and Campion [33] not much information concerning 166 keV γ rays can be gathered. Plch et al. [30] estimate, for their Ar/CH₄-filled pressurized (0.5 MPa) counter, a value of $\mathcal{E}_{\beta\gamma} \approx (0.7 \pm 0.2)\%$. On the other hand, in the context of the preliminary comparison [5], PTB estimated, for CH₄ and atmospheric pressure, $\mathcal{E}_{\beta\gamma} \approx (5.0 \pm 1.5) \times 10^{-4}$; Taylor [34] indicated $\mathcal{E}_{\beta\gamma} \approx (4 \pm 1) \times 10^{-4}$. Therefore, $\mathcal{E}_{\beta\gamma}$ may be neglected in most of the results obtained in this comparison. From Figs. 6 and 7 it can be seen that the results cluster around a slope-to-intercept ratio of 0.200 5, corresponding to a value of the total internal conversion coefficient of $\alpha \approx 0.250$ 2 with an uncertainty of not more than 0.002 5. Various measurements* of this coefficient have been published in the past:

First author	Reference	<u> </u>	
Taylor	[34]	0.250 8 + 0.001 4	
Aristov	[35]	0.254 ± 0.006	
Legrand	[36]	0.244 6 <u>+</u> 0.001 2	
Plch	[30]	0.251 ± 0.002	
Hansen	[37]	0.252 ± 0.005	(deduced)
present		0.250 2 + 0.002 5	

Ĭ

The result suggested by this comparison agrees with most of the previous measurements, but does not confirm the value by Legrand et al.

13. CONCLUSION

Seventy percent of all the national and international radionuclide metrology laboratories which had been asked by the BIPM to participate accepted to do so. With one exception, all the results were obtained by coincidence counting with efficiency extrapolation. Although many different detector types and coincidence set-ups were used, a general systematic deviation of the results cannot be excluded completely. Therefore, no attempt has been made at deriving a mean value of the radioactivity concentration of the solution distributed. Nevertheless, the fact that the results of twenty-two participants give a total spread of only 1.1% (compared to 0.6% with five selected participants in 1974 [4]) is very gratifying. It may in addition be interpreted as expressing the ability of the participants to dispense sources correctly.

^{*} Note added in proof: E. Schönfeld and R. Brust report a value of $\alpha = 0.2519 \pm 0.0006$ (Isotopenpraxis <u>13</u>, 311 (1977)).

This intercomparison has shown that the standardization of ¹³⁹Ce by conventional coincidence techniques is relatively easy; linear efficiency extrapolation is often sufficient, although the total systematic uncertainty seems mostly due to the extrapolation procedure. As the decay scheme of ¹³⁹Ce has much in common with that of ²⁰³Hg, the difficulties previously encountered in standardizing the latter are not likely to be due to the measuring method but rather to some chemical properties of mercury compounds. Liquid scintillation counting has been applied successfully by three participants. However, in each case some particular difficulty (spurious pulses, loss or excess of coincidence events, special fitting procedure) called for a more elaborate treatment. On the other hand, proportional counting seems to be much less affected by these difficulties. Moreover, gas pressure and composition had no incidence on the quality of the results. Finally, the correlation between the extrapolated activity value and the slope-to-intercept ratio of the efficiency function may be due to incomplete knowledge of the various detector efficiencies or to insufficiently precise counting corrections.

æ

Names of the persons who

List of the 23 participants

.

		carried out the measurements
AAEC	Australian Atomic Energy Commission, Lucas Heights, Australia	G.C. Lowenthal
AECL	Atomic Ènergy of Canada Limited, Chalk River, Canada	J.S. Merritt, F.H. Gibson, J.G.V. Taylor
AIEA	Agence Internationale de l'Energie Atomique, Vienna, Austria	H. Houtermans, E. Wehrstein
ASMW	Amt für Standardisierung, Messwesen und Warenprüfung, Berlin, German Democratic Republic	E. Schönfeld
BARC	Bhabha Atomic Research Centre, Trombay, India	S. Nagpal, P.K. Srivastava
BCMN	Bureau Central de Mesures Nucléaires d'Euratom, Geel, Belgium	I. Goodier, E. Celen, W. Zehner 🔉
BIPM	Bureau International des Poids et Mesures, Sèvres, France	C. Colas, C. Veyradier
ETL	Electrotechnical Laboratory, Tokyo, Japan	O. Yura, Y. Kawada
IBJ	Instytut Badán Jadrowych, Świerk, Poland	P. Zelazny
IEA	Instituto de Energia Atômica, Pinheiros-São Paulo, Brazil	Cl. Renner
IER	Institut d'Electrochimie et de Radiochimie de l'Ecole Polytechnique Fédérale, Lausanne, Switzerland	JJ. Gostely
IMM	Institut de Métrologie D.!. Mendéléev, Leningrad, USSR	A.A. Konstantinov, T.E. Sazonova, S.V. Sepman
IPA	Institut de Physique Atomique, Bucarest, Romania	L. Grigorescu, M. Sahagia, G. Lates
IRK	Institut für Radiumforschung und Kernphysik, Vienna, Austria	H. Friedmann, F. Hernegger, G. Winkler

Table 1 (cont'd)

.

	x	Names of the persons who carried out the measurements
LMRI	Laboratoire de Métrologie des Rayonnements Ionisants, Saclay, France	J. Bouchard, R. Vatin
NBS	National Bureau of Standards, Washington, D.C., USA	R.L. Ayres, A.T. Hirshfeld, D.D. Hoppes, L.M. Cavallo
NPL	National Physical Laboratory, Teddington, United Kingdom	M.J. Woods, Armstrong, Brown, Lucas, D. Smith, A. Parr
NPRL	National Physical Research Laboratory, Pretoria, South Africa	J. Steyn, S.M. Botha
NRC	National Research Council of Canada, Ottawa, Canada	G.C. Bowes, A.P. Baerg
ОМН	Országos Mérésügyi Hivatal, Budapest, Hungary	A. Szörényi
PTB	Physikalisch-Technische Bundesanstalt, Braunschweig, German Federal Republic	K.F. Walz
SCK	Studiecentrum voor Kernenergie, Mol, Belgium	C. Ballaux, P. Willeborts
UVVVR	Ústav pro výzkum, výrobu a využití radioisotopů, Prague, ČSSR	J. Plch, J. Zderadička

~~a_c

Summary of impurity determinations carried out by IER and LMRI

 $\{ i \}$

Identified	Half-life	IER			LMRI				
	(d)	Activity to 13	relative ³⁹ Ce	Standard error (%)	Systematic uncertainty (%)	Activity relative to ¹³⁹ Ce	Standard error (%)	Systematic uncertainty (%)	
		1975-06-01	(for comparison with LMRI) 1975–10–01			a) <u>Test run</u> 1975-10-01			
22 _{Na}	950	÷ -	-	-	1- 8	1 × 10 ⁻⁸	30	14	
52 _{Mn}	5.6	1.43 × 10 ⁻⁶	7.3×10^{-13}	1.2	10		-	-	
⁵⁴ Mn	312	2.84×10^{-6}	4.00×10^{-6}	0.9	5	4.9×10^{-6}	0.3	14	
65 _{Zn}	244	-	-		-	2.6×10^{-7}	5	14	N
114 _{.m}	50	1.78×10^{-6}	6.1×10^{-7}	9.6	10	9.2×10^{-7}	28	14	4
		T _{1/2} = (137.8 during 2	+ 0.2) d; three .5 months.	sources me	asured	T _{1/2} = (137.59 the 99.79 sources w	+0.12) d; confidence ere followe	uncertainty at e level. Three d during one y	e vear.
						b) <u>Main run</u>			
		1975-02-01	1976-02-14			1976-02-14			
52 _{Mn}	5.6	1.57×10^{-6}	3.34×10^{-7}	2.2	10	3.3×10^{-7}	2.1	10	
⁵⁴ Mn	312	4.68×10^{-7}	4.85×10^{-7}	2.7	5	4.5×10^{-7}	1.6	10	
⁶⁵ Zn	244		-	-	÷.	3×10^{-8}	30	10	
140 _{La}	1.68	3.85×10^{-6}	1.9×10^{-8}	7.5	10	-		-	
¹⁴¹ Ce	32.53	-	Ξ.	-	-	3.5×10^{-4}	14	3	
143 _{Ce}	1.38	6.48×10^{-6}	1.01 × 10 ⁻⁸	5.1	15	-		-	

Results of adsorption tests

.

Laboratory	Methods 1) or 2a)	Methods 1) or 2a) Method 2b	
AAEC	agreement within $(0.013 \pm 0.090)\%$	_	_
AECL	agreement within 0.15%	adsorption < 0.01%	-
AIEA	-	adsorption = (0.00 <u>+</u> 0.02)%	-
ASMW	adsorption ($pprox$ 0.5%) at pycnometer walls, after \geqslant 6 hours	-	-
BIPM	<pre>1st amp.: - (0.22 + 0.14) % 2nd " : - (0.20 + 0.14) %</pre>	+ (0.005 ± 0.002) % - (0.103 ± 0.002) %	-
ETL	agreement within 0.1%	- -	- ,
IBJ	agreement within 0.013%		_
IER	-	(0.33 + 0.39) %	Nal detector
IPA	<0.000 5% (during dispensing)	_ ≼ 0.05%	-
LMRI	check carried out (no result given)	_ *	-
NBS	agreement within 0.08%	no detectable adsorption	-
NPL	lst amp. : + 0.11% 2nd ": - 0.07%	-	-
NPRL	agreement very good	insignificant adsorption	-
ОМН	- -	-	calibrated Ge(Li) detector: < 0.000 4%
SCK	-	-	Nal detector: less than standard error

Source preparation for 4π (PC)- γ and 4π (PPC)- γ counting

Labora- tory	Source mount 1. Nature 2. Out.diam. 3. Inn. " 4. Thickness (mm)	Source backing 1. Nature 2. Number of films 3. " of met.layer 4. Total mass (µg/cm ²)	Wetting or seeding agent	 Number of sources Range of source mass (mg) 	Range of N _c /N _γ (%)	Method used for varying N _c /N _y	Balance(s) used 1. Type 2. Year of purchase 3. Date of last calibration 4. Linearity check
AAEC	1. brass 2. 35 3. 25 4. 0.05	1. VYNS, Mylar 2. 1 or 2 3. 1; 2; 4 (Au-Pd) 4. 30 to 2 050	Electrosprayed ion exchange resin; Catanac	1.10 2.22 to 55	16 to 59	a) thickness of backing b) counting gas c) anode voltage	1. Mettler M5, H16 2. 1963, 1962 3. Feb. 1976 4. yes, <u>+</u> 3 µ.g
AECL	1. Al 2. 38 3. 25 4. 0.5	1. VYNS 2. 2 3. 2 (Au-Pd) 4. ≈ 16	Catanac SN for some	1. 16 + 15 2. 16 to 53	8 to 57	Sources prepared by precipitation (NH ₃) and with or without wetting agent	 2 Mettler M5 1958, 1971 3. Apr. 1976 for one 4. yes
AIEA	1. AI 2. 31.5 3. 19.5 4. 0.1	1. VYNS 2. 1 3. 2 4. 40	Teepol + Ludox	1.20 weighed 10 el.plated 2.9 to 20	23 to 41 9 to 79	 a) dissolv. of el. pl. sources in HCI b) add wett. agent and carrier, for some 	1. Mettler ME22 2. 1976 3. Feb. 1976 4. –
ASMW	1. st'l.steel 2. 38 3. 16 4. 0.05	1. VYNS 2. 1 3. 1 (Au-Pd) 4. 30	Insulin, exch. resin, H ₂ O, NH ₃ in H ₂ O	1.10 2.11 to 33	8 to 55	Superposition of gold- coated VYNS films see [38]	1. Sartorius 2405 2. 1975 3. Apr. 1976 4. yes
BARC	1. Al 2. 38 3. 28.5 4. 0.8	1. VYNS 2. 1 3. 1 4. ≈ 35	Teflon suspension	1.30 2.10 to 60	7 to 29	By adding solid to the source	1. Mettler M5 2. 1962 3. – 4. yes

Table 4 (cont'd)

Labora– tory	Source mount 1. Nature 2. Out.diam. 3. Inn. 4. Thickness (mm) Source backing 1. Nature 2. Number of films 3. " of met.layer 4. Total mass (µg/cm ²)	Wetting or seeding agent	 Number of sources Range of source mass (mg) 	Range of Ν _c /Ν _γ (%)	Method used for varying N _c /N _y	Balance(s) used 1. Type 2. Year of purchase 3. Date of last calibration 4. Linearity check
BCMN	1. steel 1. VYNS 2. 34 2. 1 3. 16 3. 2 (Au) 4. 0.1 4. 50	Catanac	1. 8 2.15	10 to 40	a) wetting agent b) VYNS c) Al	1. Mettler M5 2. 1971 3. 1972 4. –
BIPM	1. st'l.steel1. VYNS2. 402. 13. 163. 1 or 2 (Au)4. 0.14. 20 to 400	Ludox SM 10-4	1.20+15 2.13 to 184	15 to 47	Superposition of gold plated VYNS films	1. Mettler M5 2. 1961 3. Mar. 1976 4. yes
ETL	1. brass, Au coated 1. VYNS 2. 30 2. 1 3. 16 3. 2 (Au) 4. 0.3 4. 30	Ludox SM	1.20 2.8 to 20	14 to 48	a) counting gas b) gold-coated VYNS c) anode voltage	1. Mettler M5 2. 1976 3. Feb. 1976 4. yes
IEA	1. st'l.steel 1. VYNS 2. 40 2. 1 3. 20 3. 1 4. 0.1 4. ≈ 35	Ludox	1.50 2.30 to 40	14 to 44	Superposition of absorber films	 Mettler M5 SA 1967 Feb. 1976 yes
IER	1. st'l.steel1. VYNS2. 402. 13. 16 or 203. 24. 0.14. 50	Ludox SM 10-4	1.62 2.13 to 86	14 to 45	Superposition of one gold-coated film on selected sources	 Mettler M5 SA 1964 Mar. 1976 yes

Table 4 (cont'd)

Labora– tory	Source mount 1. Nature 2. Out.diam 3. Inn. " 4. Thickness (mm)	Source backing 1. Nature 2. Number of films 3. " of met.layers 4. Total mass (µg/cm ²)	Wetting or seeding agent	 Number of sources Range of source mass (mg) 	Range of N _c /N _γ (%)	Method used for varying N _c /N _y	Balance(s) used 1. Type 2. Year of purchase 3. Date of last calibration 4. Linearity check
IMM	1. Al 2. 40 3. 22 4. 0.1	1.X-ray film Agfa 2.2 3.2 (Au) 4.30 to 40	Insulin + Ludox	1. 5 2.40 to 80	18 to 40	Discrimination	1. CMD-1000 2. 1971 3. Oct. 1975 4
IPA	1. Al 2. 30 3. 16 4. 0.1	1. VYNS 2. 1 3. 2 4. 50 to 150	Ludox	1.15 2.28 to 49	5 to 29	foil absorption	1. Mettler M5 2. 1975 3. 1976 4. yes
LMRI	1. AI 2. 38 3. 22 4. 3	1. cellulose 2. 1 3. 2 4. 100 to 160	Insulin	1.25 2.15 to 25	24 to 52	anode voltage + self absorption	1. Mettler ME22 2. 1975 3. – 4. yes
NBS	1. AI 2. 38 3. 17 4. 0.04	1. non-flexible collodion 2. 2 3. 1 4. 20 to 30	Ludox SM 10 ⁴ some sources dried in H ₂ S atmosphere	 26 2. 16 to 48 dilution(DF≈5) for sources used in 4π(PPC)-γ 	14 to 74 13 to 60	sandwich with 25µg/cm ² absorbers; discrimination	 Mettler M5 1963/4 1975 yes
NPL	1. Al 2. 38 3. 25 4. 0.5	1. VYNS 2. 1 3. 2 (Au) 4. 50	Johnsons W.A. 0.03%	1.10+10 2.28 to 49	14 to 37	addition of carrier	1. Mettler M5 2. 1964 3. 1976 4. yes

Table 4 (cont[•]d)

Labora- tory	Source mount 1. Nature 2. Out.diam 3. Inn. " 4. Thickness (mm) Source backing 1. Nature 2. Number of films 3. " of met.layers 4. Total mass (µg/cm ²)		Wetting or seeding agent	 Number of sources Range of source mass (mg) 	Range of N _c /N _γ (%)	Method used for varying N _c /N _c	Balance(s) used 1. Type 2. Year of purchase 3. Date of last calibration 4. Linearity check
NRC	1. AI 2. 38 3. 25 4. 0.8	1. VYNS 2. 1 3. 2 4. ≈ 40	Catanac SN	1. 10 + 10 2. 20 to 25	9 to 50	pulse height discrimination	 Mettler M5 1965 Feb. 1976 yes
ОМН	1. A1 2. 38 3. 16 4. 0.3	1. VYNS-3 2. 1 3. 1 (Au) 4. 20	Teepol + Ludox SM	1.24 2.10 to 46	15 to 51	sandwich with gold– coated absorber films	1. Mettler M5 SA 2. 1968 3. 1971 4. yes №
РТВ	1. Al 2. 40 3. 15 4. 0.1	1. VYNS 2. 1 3. 2 (Au-Pd) 4. 45	Ludox	1.15 2.17 to 19	4 to 23	addition of carrier and of conductive VYNS films	1. Mettler M5 2. 1966 3. Feb. 1976 4. yes
SCK	1. AI 2. 50 3. 10 4. 0.06	1. VYNS 2. 2 3. no metal layer 4. 10	Tween 20 for some sources	1.28 2.4.5 to 20	11 to 32 16 to 36	sources with different amounts of carrier	 Mettler ME22 1976 Apr. 1976 yes
UVVVR	1. Al 2. 30 3. 18 4. 0.15	1. ∀YNS 2. 1 3 4. ≈ 40	Insulin + Ludox	1.20 2.19 to 25	12 to 48	variation of discrimination level	1. Sartorius 1801 2. 1972 3. Jan. 1976 4. no

 $(y_{1}, y'_{2}) \in \mathcal{S}_{2}^{(d)}$

in a start a st

Source preparation for 4π (LS)-y counting

Labora – tory	Composition of the liquid scintillator	Intermediate solvent	 Volume of scint.vessel (cm³) Check of adsorp. or precipitation 	Range of source mass (mg)	Method used for varying N _c /N _c	Balance used 1. Type 2. Year of purchase 3. Date of last calibration 4. Linearity check
IBJ	4 g/dm ³ PPO + 0.8 g/dm ³ bis MSB	Toluen + Triton x - 100 2:1	1.22 2 -	19 to 28 32 to 66	variation of high voltage inβchannel	1. Sartorius 1801 2. 1968 3. Jan. 1976 4. no
NPL	Unisolve 1 (Koch Light Ltd.) 6 cm ³ + saturated Pb(NO ₃) ₂ solution 0.65 cm ³	-	1. 10 2. yes	15 to 30	computer see [12]	1. Mettler M5 2. 1964 & 3. 1976 4. yes
NPRL	Xylene-based scintillator "Instagel" (Packard-Corp.)	-	1.20 2.yes	32 to 59	pulse height selection	 Mettler ME22 1975 - yes correction :+ 20 μg

. .

Equipment for $4\pi(LS)-\gamma$ counting

Labora- tory	Number of phòtotubes for viewing the counting cell	 Material of counting cell Type of photomultiplier 	 Precautions taken against counting of spurious pulses Upper limit of sp. pulses 	Gamma-ray counter 1. Number of Nal(Tl)crystals 2. Diameter (mm) 3. Height (mm)
IBJ	2 in coincidence [39]	 low potassium glass EMI 9634 QR 	1 2	1. one 2. 45 3. 50
NPL	one	1. glass 2. RCA 31000 D	 correlation counting 0.1% 	1. one (well-type) 2. 100 3. 100
NPRL	two, in coincidence	1. glass 2. EMI 9635 QB	 separate determination (0 ± 0.1) % 	1. one 2. 76 3. 76

<u>ω</u>

Equipment for $4\pi(PC)-\gamma$ and $4\pi(PPC)-\gamma$ counting

 $(x_{i},y_{i}) \in \mathcal{L}_{i}$

Labora –		Gamma-ray counte	r					
tory	Wall material	Height of each half (mm)	1. Nature 2. Wire diam. (μπ 3. " length (mm)	Anode a)	 Distance from the source (mm) Voltage (kV) 	G a s 1. Nature* 2. Discr. level (eV) 3. Pressure (kPa)	 Number of Nal(crystals Diameter (mm) Height (mm) 	(TI)
AAEC	AI	27	1. Pt 2. 50	3.48 4.25	5. 2.750 to 2.900 1.750 to 1.925	1.CH ₄ 2.300 Ar/CH ₄ 3.atm.	1. 1 2. 76 3.	. 25
AECL	stainless steel 2 independe interchan	21 nt sets of ele nel delavs; 3	1. st'l. steel 2. 15 ectronics following t 6-sample automatic	3.36 4.10 the linear changer [5.2.4 stages; circuitry to se 41]	1. CH_4 3. atm. 2. ≈ 100 t and continuously mo	1.22.763. Denitor	. 76
AIFA	stainless	12		3 35	」 5 1 9 to 2 1		1 1 2 76 3	76
	steel	12	2.25	4. 8	5. 1.7 10 2.1	2. 170 or 700	1. 1 2. 70 5.	, 70
ASMW	brass (+ AI) [40]	20	1. Mo(Au-coated) 2. 40	3.55 4.10	5.3.9	1.C ₃ H8 3.atm. 2.250	1. 2 2. 102 3.	. 76
BARC	AI	26	1. st'l. steel 2. 13	3.38 4.13	5.1.5	1. Ar/CH ₄ 3. atm. 2. 200	1. 1 2. 76 3.	. 76
BCMN	plexiglas + Al	14	1. steel 2. 50	3.75.5 4.10	5.2.1	1. Ar/CH ₄ 3. atm. 2. –	1.22.763.	. 51
BIPM	brass Au-plated	20	1. st'l. steel 2. 50	3.47 4.11	5.2.3 [20]	1. Ar/CH ₄ 3. atm. 2. ≈75	1.12.763.	. 51

* Ar/CH_4 stands for 90% $Ar + 10\% CH_4$
| Labora- | | 4 pi proportional counter | | | | | | | | | | | |
|---------|--------------------|-----------------------------------|--|------------------|---|--|--|--|--|--|--|--|--|
| | Wall
material | Height
of
each half
(mm) | 1. Nature
2. Wire diam. (μπ
3. " length (mm) | Anode
n) | Distance from
the source (mm) Voltage (kV) | Gas
1. Nature*
2. Discr. level (eV)
3. Pressure (kPa) | Number of Nal(Tl)
crystals Diameter (mm) Height (mm) | | | | | | |
| ETL | brass
Au–coated | ` 20 | 1. st'l. steel
2. 50 | 3.80
4.10 | 5.2.3
3.6 | 1. Ar/CH ₄ 2. 200
CH ₄ 3. atm. | 1. 2 2. 76 3. 76 | | | | | | |
| IEA | brass | 22.5 | 1. st'l. steel
2. 20 | 3.120
4.13 | 5.1.6 | 1. Ar/CH ₄ 3. atm.
2. 50 | 1. 2 2. 76 3. 76 | | | | | | |
| IER | AI | 25 | 1. Au
2. 100 | 3.34
4.12.5 | 5.3.5 to 3.6 | 1. CH ₄ 3. atm.
2. ≈ 1 000 | 1. 1 2. 76 3. 76 | | | | | | |
| IMM | brass | 30 | 1. Constantan
2. 30 | 3.50
4.15 | 5. ≈ 2 | 1. Ar/CH ₄ 3. atm.
2. 200 | 1. 1 2. 40 3. 30 | | | | | | |
| IPA | brass | 24 | 1.W
2.20 | 3.40
4.11 | 5.3.2 | 1. CH ₄ 3. atm.
2. 1 000 | 1. 1 2. 76 3. 76 | | | | | | |
| LMRI | perspex | 22 | 1. W + Au
2. 20 | 3.80
4.10 | 5.1.8 | 1. Ar/CH ₄ 3. atm.
2. ≈100 | 1. 1, with Be window
Ø 48.5 × 0.24 mm
2. 44 3. 3 | | | | | | |
| NBS | stainless
steel | 27 | 1. st'l.steel
2. 25.4 | 3.38.1
4.18.4 | 5.2.05 | 1. Ar/CH ₄ 3. atm.
2. 750 | 1. 2, 180 ⁰ opposed | | | | | | |
| | AI-6061 | 28.3 | 1. st'l. steel
2. 51 | 3.≈53
4.14 | 5.8.0 | 1. Ar/CH ₄ 3. 1 430
2. 1 000 to 20 000 | 2.76 3.76 | | | | | | |

Table 7 (cont'd)

* Ar/CH_4 stands for 90% $Ar + 10\% CH_4$

				Table 7	(cont'd)	$\phi = \left(\frac{1}{2} \right)_{1,1} + \frac{1}{2} \left(\frac{1}{2} \right)_{1,2} + \frac{1}{2} $	
Labora –			4 pi propo	rtional	counter		Gamma-ray counter
tory	Wall material	Height of each half (mm)	1. Nature 2. Wire diam. (µm 3. " [.] length (mm)	Anode)	 Distance from the source (mm) Voltage (kV) 	G a s 1. Nature* 2. Discr. level (eV) 3. Pressure (kPa)	 Number of Nal(TI) crystals Diameter (mm) Height (mm)
NPL	Cu and perspex (Ag-coated)	14	1. P-bronze 2. 76	3.75 4.8	5.2.1	1. Ar/CH ₄ 3. atm. 2. 300	1. 2 2. 102 3. 76
NRC	AI	25	1. st'l. steel 2. 25	3.38 4.12.7	5.≈4.8	1. Ar/CH ₄ 3. 1 584 2. 600 to 6 000	1. 2 2. 76 3. 76
	2 independe live-timed a	nt coinciden nti-coincide	ace counting systems ence counting system	used alter n [24]	natively [25, 42];		
ОМН	plexiglas Au–coated	24	1. W 2. 11	3.45 4.12	5.1.55	1. Ar/CH ₄ 3. atm. 2. 180	1. 1 2. 76 3. 76
PTB	AI	22.5	1. st'l. steel 2. 50	3.30 4.12	5.3.7	1. CH ₄ 3. αtm. 2. 500	1. 1 2. 76 3. 76
SCK	perspex Au-coated	17	1. Ni, 5 wires per 2. 50 3. 50-6	half-count 4 4.9	er 5.2.0	1. Ar/CH ₄ 3. atm. 2. \approx 40	1. 1 2. 76 3. 76
	stainless steel	50	1. Ni 2. 50	3.50 4.25	5.5.7	1. Ar/CH ₄ 3. 540 2	
UVVVR	stainless steel	96 diameter	1. Mo (Au-coated) 2. 50	3.140 4.24	5.4.05	1. Ar/CH ₄ 3.≈ 500 2. 200	1. 2 2. 76 3. 51 [43]

-

* Ar/CH_4 stands for 90% $Ar + 10\% CH_4$

Table 8

Labora– tory	τ _β (μs	Deac)	times τ _γ (μs)	Method of measurement*	Resolv time* T _r (t	ing * us)	Method of measurement*	Remarks and references	
AAEC	9.00	、 (5)	20.0	(2)	DP	1.175	(1)	RC (TS, SP)		
AECL	2.049 2.020	(6) (6)	2.043 2/016	(6) (6)	SP	0.643 0 0.664 5	(3) (3)	SP	checked with calibrated oscilloscope	
AIEA	4.087	(12)	4.085	(12)	то	0.950 7	(42)	то	[44]	
ASMW	4.008	(18)	4.000	(18)	DP, TO, TS	1.046	(6)	RC [45]	$\tau_{\beta}, \tau_{\gamma}$ checked before and after each counting	
BARC	10	(1)	10	(1)	TS	1.8	(2)	RC (¹³⁷ Cs)	process	
BCMN	≈7		≈7		то	0.99	(1)	то	[46]	
BIPM	4.43	(1)	4.48	(1)	то	1.05	(1)	то		
ETL	4.35	(5)	2.11	(5)	DP	0.688 7	(28)	RC	β source, γ pulser	
IBJ	7.500 7.820	(25) (25)	7.800	(25)	DP	0.270	(10)	DP	calibrated by synchronoscope	
IEA	3.01	(2)	3.01	(2)	SP, TO	1.04	(1)	RC	[47]	
Abbrevia	itions:	DP = d TO = t	ouble-pu wo-oscille	se gene ator me	erator, RC = ran thod, TS = tw	nđom coin o-source 1	cidence nethod	s, SP = sour	ce-pulser method ,	
* Forge	* For general information on recent measuring methods see a) for SP: [47, 49], b) for TO: [50, 51, 52]									

Dead times and coincidence resolving times (in parenthesis: uncertainty in units of last decimal)

* For general information on recent measuring ** $\mathcal{T}_r = \frac{1}{2} (\theta_\beta + \theta_\gamma)$, see p. 12 Table 8 (cont'd)

.

Labora – tory	τ _β (μs)	Dead	times τ _γ (μs)		Method of measurement*	Resolv time τ _r (μ	ving ** عا	Method of measurement*	Remarks and references
IER	2.201	(1)	2.196	(1)	то	0.775	(2)	то	[48]
IMM	1.36	(2)	1.36	(2)	SP	1.475 2.080	(10) (10)	ts, to	
IPA	10.0	(5)	10.0	(5)	TS	1.095	(5)	RC	
LMRI	5.200	(25)	5.200	(25)	-	0.973	(2)	SP	variable delays
NBS	5.12	(49)	5.24	(20)	SP	0.47 set with	(2) calibra	SP	4π(PC)-γ
	20.0	(12)	20.0	(12)	SP	0.60	(5)	SP	4π (PPC)-γ
NPL	1.527	(5)	3.0	(5)	τ _β : dp	0.716	(5)	то	4π (PC)-γ
	24.6 Ty: add	(1) I to real	γ spectru	(5) (5) (m, at j	τ_{β} : DP preamplifier,	0.25 pulse w AND d	(1) idths int	·o	4π (LS)-γ
	8.00	(1)	6.01	(2)		2.95	(5)		4πSi(Li)-γ
		()	1		using time inte	rval avera	ıger	1	
NPRL	1.25	(2)	3.23	(1)	TS	0.502 0.510 0.510	(3) (3) (3)	RC	three units in parallel
Abbrevia	tions:	DP = d TO = t	ouble-pu wo-oscille	lse gen ator me	erator, RC = ro thod, TS = ty	andom coir w <u>o</u> -source	ncidence method	es, SP = sou	urce-pulser method,
* For ge	neral infor	mation	on recent	measur	ring methods see	e a) for S	P:[47,	49], b) for	TO:[50, 51, 52]
** T _r =	$\frac{1}{2}(\theta_{\beta} + \theta)$	y), se	e p. 12						

Labora –	De	ad times	Method	Resol	Method	Remarks and references		
tory	τ _β (μs)	τ _γ (μs)	of measurement*	time T _r (μs)	of measurement*		
NRC	$\begin{array}{cccc} 2.03 & (2) \\ 2.12 & (2) \\ 5.4 & (\approx 1) \end{array}$	2.04 (2) 2.10 (2) 2.07 (2)	SP SP DP	0.982 0.976	(1) (1)	S P S P	system 1 system 2 anticoincidence	
ОМН	4.99 (10)	4.93 (10)	то	1.032	(15)	TO		
РТВ	2.98 (3)	3.00 (3)	то	2.87	(3)	TO		
SCK	15.0 (5)	2.2 (1)	116 ₁ m1	2.0	(1)	N _c /N _y vs. delay	4π(РС)-γ, 4π(РРС)-γ	
UVVVR	6.57 (5) study of time	4.12 (5) -interval distribut	[43] ion	1.980	(8)	TS		

Table 8 (cont'd)

Abbreviations: DP = double-pulse generator, RC = random coincidences, TO = two-oscillator method, TS = two-source method * For general information on recent measuring methods see a) for SP: [47, 49], b) for TO: [50, 51, 52] ** $\tau_r = \frac{1}{2} (\theta_{\beta} + \theta_{\gamma})$, see p. 12

Table 9

s y e

Coincidence counting data

Labora – tory	γ channel (keV)		Bacl	kgroun (s ⁻¹	d rates)	Number Number of Me of sources data points fo measured used in dat		Mean time for one data point	Correction Time for measu Gandy effect from		Time of the measurements		Uncertainty in $\frac{1 - N_c / N_{\gamma}}{N_c / N_{\gamma}}$	
	from	to	β	Y	С	varia N	ation of \sqrt{N}	siope der.	(s)	(%)			accoun % char	ted for ? nge in a _o
AAEC	161	171	1.2 to 1.8	0.24	0.001	4	6	15 see [53]	11 000	0	Apr. 8	Apr.30	yes	0.003 3
AECL	≈125 120	200 200	0.3 0.3	2.0 2.0	0.006 0.006	16 15	-	210 180	1 000 860	0 to 0.080 0 to 0.005	Apr. 5 Apr.26	Apr. 9 Apr.29	r	00 10
AIEA	60	240	.1	9	0.05	10	20	62	2 000	0	Mar.20	May 15	r	10
ASMW	100	200	1.9	7.6	0.008	9	-	24	2 000	0	Apr.19	Apr.23	yes	0.045
BARC	-	-	0.5	1.7	0.002	4	29	58 see [54]	4 000	-	Mar. 5	May 26	ſ	סו
BCMN	-	-	0.4	4	0.01	8	-	64	1 000	-	Mar.	Mar.		-
BIPM	140	190	0.5	1.4	0.007	6	4	27	3 000	0	Mar.24	Mar.30	r	סו
ETL	130	200	0.8	3.6	0.001 2	10	10	39	1 500	0	Mar.14	Mar.23		
IBJ	* 65 95 *125	∞ 235 235	3.7 3.8	9.7 4.8 3.8	0.35 0.07 0.06	10 6 9		12 9	600 300 300	0 0 0	Mar.15 Jun.30 Jun.29	Mar.16 Jul. 2 Jun.30		סו סו סו

* The results obtained with these γ-channel settings were found to be low and high, respectively, by about 2%, due to incorrect coincidence count rates. They were therefore discarded.

		,	121	
	1.1			

Table 9 (cont'd)	

Labora– tory	γ channel (ke∨)		Bac	Background rates. (s ⁻¹)			mber ources sured	Number of data points used in	Mean time for one data point	Correction for Gandy	Time of the measurements		$\frac{1 - N_c / N_{\gamma}}{N_c / N_{\gamma}}$	
	from	to	β	Ŷ	с	with varia N c	without tion of /N y	slope det.	(s)	effect (%)	from	to	accounted for ? % change in a _o	
IEA	148	200	2.0	4.3	0.019	3	50	25	1 800	1	Apr.20	May 20	-	
IER	142	193	≤ 2	≤9. 8	€0.009	8	46	16	2 036	0	Mar.25	Apr. 6	yes 0.0056	
IMM	a wide	e gate	2	18	0.2	5		17	1 000	0	Mar.16	Apr.23	-	
IPA	130	200	2.1	1.9	0.029	4	11	19	(1 to 3.6) × 10 ³	0	May 20	Jun.18	no	
LMRI	136	216	2.5	0.2	0.02	24	-	120	600	-	May 25	Jun.2	yes 0.016	
NBS	128 113	202 218	0.4 ≤1.9	4.9 5.5	0.002 0.02	11 4	-	37 42 see [55]	3 600 2 300	0 0	Apr. 2 Mar.24	Apr. 8 Apr. 8	no no	
NPL	100 100 phote	300 300 opeak	2.2	4.8	0.13	PC 9 PC 8	1 2	63 40	1 000 1 000	0 0	Mar.25 Apr. 6	Apr. 1 Apr. 9	no no	
	only, 50 140 and 100	and 100 190 230	3.0 1.3	1.2	0.02 0.03	LS 9 Sili7	-	30 _ 23	(1 to 2)×10 ³ 1 000	0 0	Mar.25 Mar.30	Mar.26 Apr. 9	yes – yes –	

Table 9 (cont'd)

Labora– tory	γchc (ke from	v) to	βας	kgroun (s ⁻¹ γ	d rates) c	Nu of sc mea with varia N	mber ources sured without ition of /N y	Number of data points used in slope det.	Mean time for one data point (s)	Correction for Gandy effect (%)	Time measur from	of the rements to	Uncerta 1 - N 	ainty in $\frac{N_{\gamma}}{N_{\gamma}}$ $\frac{N_{\gamma}}{N_{\gamma}}$ ted for ge in a	۱ ?
NPRL	photo	peak	<u> </u>	3.4	_	16	-	15	800	0	Mar.18	Mar.23	yes	0.01	
NRC	130 130 130	200 200 200	0.8 0.5 0.5	1.7 1.6 1.6	0.004 0.005 1.6	10 10 10 AC 10	- - -	15 15 15 15	500 500 500 ≈ 530	0 0 0 0	Mar.15 Mar.22 Mar.15 Mar.20	Mar.20 Mar.27 Mar.20 Mar.27	yes	<0.1	
ОМН	140	193	2.1	5.1	0.01	3	24	9	2 000	0	May 25	May 28	n	0	
PTB	130	œ	0.5	16	0.2	- 8	7	53	4 000	+ 0.01	May 3	May 15	n	0	40
SCK	140	210	36 12	1.4 11	0.05 0.056	PC - PPC-	25 20	25 18	400 800	0 0	Apr.16 Apr.17	Apr.30 Apr.22	n n	0 0	
UVVVR	90	230	19	7.1	0.09	2	19	20	1 000	0	Apr. 4	Apr.15	n	0	

Τa	b	le	1	0

Results of	the χ^2 tests for the efficie	ency functions
(ソ is	the number of degrees of fre	eedom)
Laboratory	Counting method	χ^2 / ν
AECL	4π(PC)-γ	1.8
BIPM	11	0.71
IER	11	0.95
IMM	н	-
IPA	н	1.2
LMRI	11	0.6
NPL	4π(PC)-γ) 1.27 (0.19
) 4π (LS)-γ (4πSi(Li)-γ	1.2 - 2.9 1.5 - 5.0
NPRL	4π(LS)-γ	0.85
NRC	{ 4π(PPC)-y coinc. " anticoinc.	0.97 1.13

ļ

41

a ay a

Table 11

a g_{al} a st

Final results and uncertainties

Labora– tory	Method used*	Amp num	oule nbers	Slope-to-i rati · (and unce	ntercept o rtainty)	Radioactive concentration 1976–03–15	Standard of the n	error nean	Number of degrees of freedom	Total syste uncerta (see also To	ematic inty able 12)
						0 h UT (Bq•mg ⁻¹)	(Bq•mg ⁻¹)	(%)		(Bq•mg ⁻¹)	(%)
AAEC	4 π(PC)-γ	2	42	0.199 18	(18)	710.24	0.82	0.12	13	1.78	0.25
AECL	4π(PC)-γ	1	1 19	0.200 32 0.200 39	(4) (7)	710.55 710.46	0.09 0.12	0.013	208 1 <i>7</i> 8	0.34 0.61	0.048 0.086
AIEA	4π (PC)-γ	33	72	0.198 72	(25)	711.59	0.33	0.05	-	0.71	0.1
ASMW	411(PC)-γ	13	51	0.201 64	(7)	711.1	0.7	0.1	9	1.9	0.262
BARC	4π (PC)-γ	18	56	0.197 0	(4)	712.2	1.1	0.15	56	3.8	0.53
BCMN	4π(PC)-γ	7	46	0.201 4	(6)	709.98	0.21	0.03	>10	4.62	0.65
BIPM	4π(PC)-γ	15	5 53	0.203 3 0.202 9	(6) (2)	710.48 711.08	1.35 0.52	0.19 0.07	25 31	8.31 4.05	1.17 0.57
ETL	4π(PC)-γ	19	57	0.201 4	(6)	710.37	0.96	0.14	37	3.48	0.49
IBJ	4π(LS)-γ	22	60	0.191 8	(24)	712.6	2.5	0.35	5	5.0	0.70
IEA	4π (PC)-γ	8	47	0.206 7	(7)	708.5	0.3	0.04	44	1.5	0.21
IER	4π (PC)- γ	27	65	0.200 36	(16)	709.86	0.08	0.012	45	2.13	0.3

Table 11 (cont[®]d)

Labora– tory	Method used*	Ampoule numbers	Slope-to-intercept ratio (and uncertainty)	Radioactive concentration 1976-03-15	Standard error of the mean	Number of degrees of freedom	Total syst uncerta (see also T	ematic ainty able 12)
				(Bq • mg ⁻¹)	(Bq·mg ⁻¹) (%)		(Bq•mg ⁻¹)	(%)
IMM	4π (PC)-γ	30 67	0.189 4 (6)	710.47	0.71 0.1	3	(+ 0.78)- 1.07	+ 0.11
	XK(Nal)-γ 2πXL(PC)-γ		-	709.01 708.05	0.35 0.05 0.35 0.05	12 12	4.96 5.67	0.7
IPA	4 μ (PC)-γ	23 61	0.198 72 (53)	714.47	0.27 0.038	3 17	2.63	0.368
IRK	4π (Nal)γ	3 43	< −	715.0	0.4 0.06	7	4.0	0.56
LMRI	4 π (PC)-γ	14 52	0.2 04 5 (40)	708.4	0.9 0.13	117	0.7	0.092
NBS	4 гг (РРС)-ү 4 гг (РС)-ү	28 66	0.202 8 (1) 0.198 0 (2)	713.73 712.86	0.16 0.02 0.26 0.04	41 36	3.07 3.42	0.43 0.48
NPL	4π (PC)-γ 4π (PC)-γ 4π (LS)-γ 4π Si(Li)-γ	16 54 16 16	0.200 4 (7) 0.200 2 (3) - -	710.1 711.6 711.45 709.58	0.9 0.13 0.4 0.06 0.65 0.1 2.31 0.32	62 38 18 6	3.1 3.5 11.4 9.3	0.43 0.49 1.6 1.3
NPRL	4π(LS)-γ	24 62	(0.248 3) (5) 0.245 1	(719.8) 710.4	0.4 0.06	15	(1.1) 3.5	(0.15) 0.5
NRC	4π (PPC)-γ 1 4π (PPC)-γ 1 4π (PPC)-γ 2	48 9 48	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	711.9 711.7 711.4 711.5	0.2 0.03 0.2 0.03 0.2 0.03 0.2 0.03	9 9 9 9	<1.3 <1.3 <1.3 <1.0	<0.18 <0.18 <0.18 <0.18 <0.14

Labora– tory	Method used*	Amp num	oule bers	Slope-to-intercept ratio (and uncertainty)		e-to-intercept Radioactive ratio concentration d uncertainty) 1976–03–15		Standard error of the mean		Total systematic uncertainty (see also Table 12)	
				•		(Bq • mg ⁻¹)	(Bq•mg ⁻¹)	(%)		(Bq·mg ⁻¹)	(%)
омн	47ī (PC)-γ	17	55	0.199 7	(45)	710.7	0.4	0.05	17	5 .2	0.73
PTB	4π (PC)-γ	4	44	0.200 04	(3)	710.42	0.24	0.05	51	1.1	0.15
UVVVR	4TT (PPC)-γ	12	50	0.200	(2)	715.85	0.24	0.04	18	5.37	0.75

-

Table 11 (cont[•]d)

na y si

PC : proportional counter
 PPC : pressurized proportional counter
 LS : liquid scintillator

AC : anti-coincidence

the hyphen indicates the use of a coincidence technique

Table 12

Systematic uncertainty of the final result

Labora– tory	% uncertainty due to 1) weighing, 2) dead time, 3) resolving time, 4) background, 5) extrapolation, 6) others, 7) difference between intercepts for 1st and 2nd order fits	How was it obtained?
AAEC	1) 20.025 2) 20.05 3) 0.005 4) - 5) 0.15, see [56] 6) 0.01 7) 0.17	$\Delta m = 5 \mu g$. Uncertainty in time measurement. Compar. with earlier measurements.
AECL	1) 0.005 2) 0.007 3) 0.001 4) 0.003 5) 0.028 0.066 6) 0.004 7) 0.028	Diff. 2 balances + uncert. of buoyancy corr. By setting each parameter separately to its extreme value. From 5% background variation observed. Diff. betw. intercepts for 1st and 2nd order fits.
AIEA	1) 0.05 2) $-$ 3) $-$ 4) $-$ 5) 0.05 6) 0.05 7) ≈ 0.01	∆m large number of measurements; no bias expected. - General uneasiness.
ASMW	1) 0.08 2) 0.004 3) 0.06 4) 0.01 5) 0.09 6) 0.018 7) 0	$\Delta m = \pm 2 \mu g$, tested at diff. balances. 2% of correction. 3% of corr. for y background. Estim. from slope and error in x. $\Delta T_{1/2}$ and timing.
BARC	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\Delta m = 20 \ \mu g$. Considering extreme values. Comparing different sets of data. Timing.

. ...

Table 12 (cont'd)

Labora – tory	% uncertainty due to 1) weighing, 2) dead time, 3) resolving time, 4) background, 5) extrapolation, 6) others, 7) difference between intercepts for 1st and 2nd order fits	How was it obtained?
BCMN	1) 0.05 2) 0.1 3) 0.1 4) - 5) 0.4 6) - 7) 0.55 for 4 sources out of 8.	- see [46]. - see [57]. -
BIPM	1) 0.02 2) 0.006 3) 0.15 4) 0.001 5) 0.69 6) - 7) 0.69	$\begin{split} &\Delta m = 10 \mu g. \\ &\Delta \tau' \cdot N_c / (1 - \tau' N_c). \\ &(\Delta \tau_r / \tau_r) \cdot (N_{acc} / N_c). \\ &(\epsilon_{\gamma} \cdot N_o)^{-1} \cdot (\beta_{\gamma} / t)^{1/2}. \\ &\text{Diff. 1st and 2nd order fits.} \end{split}$
ETL	1) 0.05 2) 0.04 3) 0.015 4) 0.003 5) 0.3 6) 0.05 7) 0.3	$\Delta m = 10 \ \mu g.$ $2 \ \Delta \tau_{\beta} \cdot N_{\beta} \ max.$ $3 \ \Delta \tau_{r} \cdot N_{\beta} \ N_{\gamma} / N_{c}.$ $\Delta B_{\gamma} / N_{\gamma}.$ Diff. 1st and 2nd order fits. Delay variation.
IBJ	1) <0.088 2) <0.002 3) <0.087 4) <0.01 5) - 6) <0.000 1 7) 0.69	$\begin{array}{l} \Delta m/m \\ \Delta \tau' \ N'_c/t, \\ (\Delta \tau_r/t) \ (N_{\beta} + N_{\gamma}' - (2 \ N_{\beta}' \ N_{\gamma}' / N_c)), \\ \Delta \tilde{B}/N'. \end{array}$ Timing.
IEA	1) 0.04 2) 0.001 3) 0.01 4) 0.015 5) $-$ 6) $-$ 7) 0.59	(States a total syst. uncertainty of 0.21%.)

% unco 1) weighing, 3) resolving 5) extrapola 7) difference for 1st and	ertainty due 2) dead ti time, 4) ba tion, 6) oth between i d 2nd order	e to me, ickground, ners, ntercepts fits	How was it obtained?
1) 0.03 2) 0.003 3) 0.02 4) 0.04 5) 0.2 6) - 7) 0.023			$ \begin{array}{l} \Delta m/\overline{m} & . \\ \Delta \tau' N_{\beta}/(1-\tau' N_{\beta \max}) . \\ (\Delta \tau_r/\tau_r) (N_{acc}/N_{c\max}) . \\ \sigma_{z\gamma}/N_{\gamma} . \\ Using extreme slope and \overline{x} = 1.5 . \end{array} $
$ \begin{array}{rcrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	KX (Nal)-γ 0.05 0.005 0.02 0.05 0.07	2πPCLX-γ 0.05 0.005 0.02 <0.005 0.05 0.8	Afterpulses. Constants.
1)0.052)0.0153)0.024)0.0035)0.116)0.177)0.20			Δ m, evaporation. Error propagation. Spurious pulses, adsorption, T _{1/2} , timing.
1) 0.082 2) 0.015 6) 0.041		ar ing a	Timing, T1/2.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			(States a total syst.uncertainty of 0.092%; (we add 7) and use 0.95% in Fig. 4).) Timing, T1/2.
	% unce 1) weighing, 3) resolving 5) extrapolat 7) difference for 1st and 1) 0.03 2) 0.003 3) 0.02 4) 0.04 5) 0.2 6) -7 7) 0.023 4 π PC $-\gamma$ 1) 0.05 2) 0.005 3) 0.01 4) <0.005 5) 0.1 6) -0.1 7) -1 1) 0.05 2) 0.015 3) 0.02 4) 0.003 5) 0.11 6) -0.1 7) -2 1) 0.05 2) 0.015 3) 0.02 4) 0.003 5) 0.11 6) 0.17 7) 0.20 1) 0.082 2) 0.015 6) 0.041 1) 0.04 2) 0.015 6) 0.041 1) 0.04 2) 0.001 3) 0.02 4) 0.001 5) -6 0.03 7) 0.86	 % uncertainty due 1) weighing, 2) dead ti 3) resolving time, 4) ba 5) extrapolation, 6) oth 7) difference between i for 1st and 2nd order 1) 0.03 2) 0.003 3) 0.02 4) 0.04 5) 0.2 6) - 7) 0.023 4π PC -γ KX (Nal) -γ 1) 0.05 0.05 2) 0.005 0.005 3) 0.01 0.02 4) 40.005 5) 0.1 6) -0.1 0.05 0.07 7) - 1) 0.05 2) 0.015 3) 0.02 4) 0.003 5) 0.11 6) -0.1 0.05 0.07 7) - 1) 0.05 2) 0.015 3) 0.02 4) 0.003 5) 0.11 6) 0.17 7) 0.20 1) 0.082 2) 0.015 6) 0.041 1) 0.04 2) 0.015 6) 0.041 1) 0.04 2) 0.001 3) 0.02 4) 0.001 5) - 6) 0.03 7) 0.86 	% uncertainty due to 1) weighing, 2) dead time, 3) resolving time, 4) background, 5) extrapolation, 6) others, 7) difference between intercepts for 1st and 2nd order fits 1) 0.03 2) 0.003 3) 0.02 4) 0.04 5) 0.2 6) - 7) 0.023 $4\pi PC - \gamma KX(Nal) - \gamma 2\pi PC LX - \gamma$ 1) 0.05 0.05 0.005 2) 0.005 0.005 0.005 3) 0.01 0.02 0.02 4) $40.005 lefty 0.05 lefty 0.05 lefty 0.005 lefty 0.$

Table 12 (cont'd)

Labora – tory	% uncertainty due to 1) weighing, 2) dead time, 3) resolving time, 4) background, 5) extrapolation, 6) others, 7) difference between intercepts for 1st and 2nd order fits	How was it obtained?
N BS	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Estimated from past results. From measured uncertainty at 99% confidence level. From variations observed. Max. range 1st through 3rd order fits. Gandy effect, T _{1/2} , dilution.
NPL	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	From uncert. of total mass of 10 sources. $\Delta \overline{\tau}'$. $\Delta \overline{\tau}_r$. ΔB . Diff. between 1st and 2nd order fits. Contamination by ¹⁴¹ Ce.
NPRL	1) 0.01 2) 0.002 3) 0.03 4) 0.003 5) 0.1 6) 0.3 7) 0.05	Manufacturer's estimate. Estimated from inaccuracy in the measurements of these parameters. By using different channel settings. Count rate dependence (+ spurious pulses).
NRC	$\begin{array}{cccccc} 4\overline{0}\text{PPC}-\gamma & \text{AC} \\ 1) & < 0.03 & < 0.03 \\ 2) & < 0.01 & - \\ 3) & < 0.03 & - \\ 4) & < 0.01 & < 0.01 \\ 5) & < 0.1 & < 0.1 \\ 6) & - & < 0.005 \\ 7) & - \end{array}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$
ОМН	1) 0.04 2) 0.01 3) 0.05 4) 0.01 5) 0.60 6) 0.02 7) 0.47	By calculating the maximum values .

Labora – tory	% uncertainty due to 1) weighing, 2) dead time, 3) resolving time, 4) background, 5) extrapolation, 6) others, 7) difference between intercepts for 1st and 2nd order fits	How was it obtained?
РТВ	1) 0.02 2) < 0.01 3) 0.03 4) 0.02 5) 0.05 6) 0.04 7) 0.058	$2\Delta m/m, \qquad \Delta m = 2\mu g.$ $(3\Delta \overline{\tau}_r/\tau_r) \cdot N_{acc}/N_c.$ $3\Delta B_{\gamma}/N_{\gamma}.$ Spread of individual slopes. $\Delta T_{1/2} = 0.07 \text{ d.}$
SCK	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	See [58]. See [25].
UVVVR	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\Delta m = 15 \mu g.$ Max. 150 ns. Max. 25 ns. Mainly γ channel. Max. a ₁ = 0.002; a ₂ = 0.000 1 Max. ± 5 h.

geometry,

Symbols used in this table

7)

a _o , a ₁ , a ₂	See reporting Form, Fig. 1	†	Measuring time
В	Stands for Bg or By	$T_{1/2}$	Half–Life of ¹³⁹ Ce
B_{β}, B_{γ}	Background rates '	x, y	See reporting Form
m	Source mass	Δ	Uncertainty of
No	Disintegration rate	ε _γ	Efficiency of γ detector
$N_{\beta}, N_{\gamma}, N_{c}$	Count rates, corrected for background	σzγ	Standard deviation of 21 measurements of By
N_{R}^{\prime} , N_{V}^{\prime}	Count rates, uncorrected	τ'	The shorter of τ_{B} or τ'_{V}
N ^P	Stands for N'_{B} or N'_{V}	$\tau_{\beta}(\tau_{v})$	Dead time in $\beta(\gamma)$ channel
N _{acc}	Rate of accidental coinc.	τ'_{r}	Coincidence resolving time

se april

Table 12 (cont'd)

BUREAU INTERNATIONAL DES POIDS ET MESURES

International comparison of a solution of ¹³⁹Ce

Participating Laboratory:

 $T_{1/2} = (137.65 \pm 0.07) d$

Source	preparation	า
		_

for 4π(PC)-γ counting	for 4π(LS)-γ counting
Nature Outer diameter Nature Inner diameter Thickness Nature Mm Mm Mm	Range of source mass: (to) m Volume of scintillation vessel cm ³ Intermediate solvent Composition of liquid scintillator
D Number of films per source Number of metal layersper source Total mass per cm ²	
Wetting or seeding agent	Was possible adsorption or precipitation of active material in the counting cells checked?
Were checks made to see that the actual liquid used of the solution, e.g. by preparing ampoules for ion in the pycnometer before and after dispensing the so If so, how good was the agreement ? Result of an eventual adsorption test	d in the source dispensing was representative -chamber measurement from the solution ources ?

Balance used -	Туре	Has the optical scale				
	Year of purchase	been checked for				
	Date of last weight calibration	linearity ?				
	Was a buoyancy correction applied ?	If so, of how much ?				

Counting equipment

	<u>4</u> πproportional counter		Liquid scintillation counter					
Gas Anode	Wall material Height of each half	••••• •••• mm	Material and volume of counting cell					
	Nature Wire diameter Wire length Distance from source Voltage Nature Pressure Discrimination level .		Number of photomultipliers used for viewing the cell Type of photomultiplier If two phototubes were used, were they used in coincidence, summation, or both For one tube only, or two in summation, were precautions taken against counting of spurious pulses? Describe how					
	Gamma ray counter –	Number and no Diameter Height	ature of crystals					
Dead times and their uncertainties (standard errors) $\tilde{\iota}_{\beta} = (\ldots + \ldots + \ldots) \mu s$								
Expla	in how they were determi	ined	$\tau_{\gamma} = (\ldots + \ldots) \mu s$					

Please provide a block diagram of your counting set and eventual references as to published papers, internal reports, etc. (on a separate sheet).

Figure 1 - Specimen of the reporting form

Coi Ex · · · · · · · · · · · · · · · · · · ·	incidence resolving time $\tau_r (\approx \frac{1}{2} \frac{acc}{n_{\beta} \cdot n_{\gamma}}) = (\ldots + \pm \ldots) \mu s$ xplain how it was measured \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots	µs %							
<u> </u>	unting data								
·	γ channel setting Background rates: $B_{\beta} = \dots s^{-1}$, $B_{\gamma} = \dots s^{-1}$, $B_{c} = \dots s^{-1}$								
	Number of sources with variation of N_c/N_γ (for slope determination)								
24 1. 	Number of data points used in slope determination $\dots \dots \dots$								
	Slope/intercept ratio (with standard error) <u>+</u>								
Final result	Intercept for $N_c/N_y \rightarrow 1$ at reference date (1976 , 0 h 00 UT) Bq mg^{-1}Standard error of the mean Number of degrees of freedom Bq mg^{-1}	• %							
	Time of the measurements (year, month, day) to	N. N							
	Let the fitted polynomial be of the form $y = a_0 + a_1 \times a_2 \times a_2^2 + \dots$, with $y = \frac{N_\beta N_\gamma}{m N_c}$ $x = \frac{1 - N_c / N_\gamma}{N_c / N_\gamma}$, m = source mass. If the order exceeds one, indicate the values $a_1 / a_0 = \dots a_2 / a_0 = \dots a_3 / a_0 = \dots$. Has the uncertainty in the values of the abscissa x been accounted for ? If so, by how much does this affect a_0 ? Goodness of fit: Give a graph of the residuals of the fitted efficiency function similar to the one enclosed. State result of χ^2 test (if carried out):								
For	rmula used for calculating the data points								

System	atic uncertainty o	f final	result	-	Explain	ho w	it	was	de te	rmi	ned	ĺ
due to	weighing	• • • •	• • • •	%	•	• • •	••	•••	• •	• • •	• •	,
	dead time	• • • •	• • • •	%	•	• • •	••	• • •	••	• • •	••	
	resolving time	• • • •	• • • •	%	•	• • •	••	•••	• •	• • •	••	
	background	• • • •	• • • •	%	•	• • •	••	• • •	••	• • •	••	I.
	extrapolation		• • • •	%	•	• • •	••	• • •	• •			I.
	others (indicate)	• • • • •	• • • • •	%	•	• • •	••	• • •	••	• • •		
	total	• • • •		%	•	• • •		• • •			•••	,

Laboratory:

. . . .

Name(s) of person(s) who carried out the measurements

Figure 2 (cont'd)

1 - triple scintillation head, 2 - amplifiers, 3 - discriminators, 4 - sum unit, 5 - first stage coincidence unit, 6 - second stage coincidence unit, 7 - outputs to the scalers

IPA |

Figure 2 (cont'd)

I

Schematic of live-timed anti-coincidence circuitry

ž

Figure 3 - Efficiency extrapolation, residuals.

The bars of the data points represent one time the random uncertainty as estimated from

- the efficiencies \mathcal{E}_{β} and \mathcal{E}_{γ} in a single count (BIPM, ETL, LMRI, NPRL, OMH), see [28],
- the standard error of the mean of m counts, where m is 5 to 6 (AIEA),

4 (IEA), 20 (IER), 6 to 20 (IPA), 5 (NPL), 4 to 6 (PTB).

Other participants have used more elaborate procedures:

AECL (see p. 17)

BARC (by combining uncertainties of slope and intersection with the standard deviation according to [28]) N

$$\operatorname{NRC}(\operatorname{see}[27]).$$

ţ

.**

Figure 4 - Graphical representation of the results. The black (or white) rectangles correspond to the random (or systematic) uncertainties.

Figure 5 - Distribution of the results of the radioactivity concentration.

Figure 6 - Distribution of the values obtained for the slope-to-intercept ratio.

Figure 7 - Correlation of the intercept and the slope-to-intercept ratio. The normalized results of the preliminary comparison [5] are included for comparison.

REFERENCES

- [1] Comité Consultatif pour les Etalons de Mesure des Rayonnements Ionisants (CCEMRI), Section II, Mesure des Radionucléides, 1^{re} réunion, 1970, p. R13
- [2] Procedures for accurately diluting and dispensing radioactive solutions, Monographie BIPM-1 (1975), Recueil de Travaux du BIPM, vol. 5, 1975–1976
- [3] The detection and estimation of spurious pulses, Monographie BIPM-2 (1976), Recueil de Travaux du BIPM, vol. 5, 1975-1976
- [4] A. Rytz, Rapport sur la comparaison préliminaire d'une solution de ¹³⁴Cs (juillet-septembre 1974), CCEMRI, Section II, Mesure des Radionucléides, 3^e réunion, 1975, Annexe R(II) 3 (1976)
- [5] Rapport sur la comparaison préliminaire d'une solution de ¹³⁹Ce (octobre 1974), ibid., Annexe R(II) 4 (1976)
- [6] A. Williams and M.J. Woods, Report on ⁵⁷Co 'mini-intercomparison', organized by NPL on behalf of BIPM (Reference date 1976-03-04)
- [7] A. Rytz, International comparison of a solution of ¹³⁹Ce (March 1976), preliminary report, Rapport BIPM-76/8 (1976)
- [8] J. Steyn, private communication, December 1976
- [9] R.D. Neirinckx, The purification of cyclotron-produced carrier-free 139Ce, Int. J. Appl. Radiat. and Isotopes 21, 681-682 (1970)
- [10] J.G.V. Taylor, private communication, 1975
- [11] J. Steyn and S.M. Botha, International comparison of the radioactivity of a ¹³⁹Ce solution (March 1976): The effect of spurious pulses on the accuracy of the final result, NPRL Research Report FIS 102, 21 p. (1976)
- [12] D. Smith, An improved method of data collection for 4πβ-γ coincidence measurements, Metrologia 11, 73-77 (1975)
- [13] A. Williams and P.J. Campion, On the relative time distribution of pulses in the 4πβ-γ coincidence technique, Int. J. Appl. Radiat. and Isotopes 16, 555-560 (1965)
- [14] K. Munzenmayer and A.P. Baerg, Delay matching of beta-gamma coincident pulses, Nucl. Instr. and Meth. 70, 157–163 (1969)

- [15] W. Mannhart and H. Vonach, Absolute calibration of a well-type Nal-detector to an accuracy of 0.3-0.1%, Nucl. Instr. and Meth. 136, 109-117 (1976)
- [16] W. Mannhart, Präzisions-Aktivitätsbestimmung mittels eines Bohrloch-Gamma-Spektrometers, Thesis, Munich 1975 (57 p.)
- [17] P.J. Campion, The standardization of radioisotopes by the beta-gamma coincidence method using high efficiency detectors, Int. J. Appl. Radiat. and Isotopes 4, 232–248 (1959)
- [18] J. Bryant, Coincidence counting corrections for dead-time loss and accidental coincidences, Int. J. Appl. Radiat. and Isotopes <u>14</u>, 143-151 (1963)
- [19] A. Rytz, Rapport sur la comparaison internationale de la méthode $4\pi\beta(CP)-\gamma$ au moyen du cobalt-60, CCEMRI, 5^e session, 1964
- [20] P. Bréonce, A. Rytz et C. Veyradier, Description de l'ensemble No. 3 de comptage par coîncidences 4πβ(CP)-y utilisé au BIPM, Rapport BIPM-75/2 (43 p.) 1975, Recueil de Travaux du BIPM, vol. 5, 1975-1976
- [21] A. Gandy, Mesure absolue de l'activité des radionuclides par la méthode des coincidences béta-gamma à l'aide de détecteurs de grande efficacité. Etude des coincidences instrumentales, Int. J. Appl. Radiat. and Isotopes 11, 75-91 (1961)
- [22] I.W. Goodier, 4πβ-γ coincidence equations, BCMN Internal Report, CBNM/RN/20/76, 4 p. (1976)
- [23] D.R. Cox and V. Isham, A bivariate point process connected with electronic counters, Proc. R. Soc. Lond. <u>A356</u>, 149–160 (1977)
- [24] A.P. Baerg, K. Munzenmayer and G.C. Bowes, Live-timed anti-coincidence counting with extending dead-time circuitry, Metrologia 12, 77-80 (1976)
- [25] A.P. Baerg, The efficiency extrapolation method in coincidence counting, Nucl. Instr. and Meth. 112, 143–150 (1973)
- [26] J.S. Merritt, Private communication to J.W. Müller, February 1977
- [27] R.J. Adams and A.P. Baerg, Least squares polynomial fitting of coincidence counting data for the evaluation of absolute disintegration rates, Standardization of radionuclides, IAEA, Vienna, SM-79/25, p. 123-127 (1967)
 - A.P. Baerg, Dead time, decay and background effects in counting, Int. J. Appl. Radiat. and Isotopes 24, 401-405 (1973)

- [28] P.J. Campion and J.G.V. Taylor, Statistical errors in disintegration rate measurements by the coincidence technique, Int. J. Appl. Radiat. and Isotopes 10, 131-133 (1961)
- [29] J.S. Merritt, F.H. Gibson and J.G.V. Taylor, Report to the BIPM on this comparison (1976)
- [30] J. Plch, J. Zderadička and O. Dragoun, Measurements of the total internal conversion coefficient and P_μ^ω_κ probability in the decay of ¹³⁹Ce, Intern. J. Appl. Radiat. and ^KIsotopes <u>26</u>, 579–587 (1975)
- [31] J.S. Merritt and J.G.V. Taylor, The response of 4π proportional counters to γ-rays, Standardization of radionuclides, IAEA, Vienna, SM-79/66, p. 147-152 (1967)
- [32] D.F. Urquhart, A new method for the measurement of the gamma counting efficiency of 4TT beta gas counters, Standardization of radionuclides, IAEA, Vienna, SM-79/27, p. 167-181 (1967)
- [33] A. Williams and P.J. Campion, The measurement of the gamma sensitivity of a 4πβ counter, Intern. J. Appl. Radiat. and Isotopes 14, 533-540 (1963)
- [34] J.G.V. Taylor, Private communication (1974) and comments on "Internal conversion of the 166-keV transition in ¹³⁹La" by J.G.V. Taylor and J.S. Merritt, Bull. Am. Phys. Soc. 7, 352 (1962)
- [35] E.A. Aristov and V.A. Bazhenov, Determination of the total coefficient of internal gamma-radiation conversion of ¹³⁹/₅₇La, Izmer. Tekhn. No. 12, 61-62 (1971); Meas. Tech. (USSR) <u>14</u>, 1883-1885 (1971)
- [36] J. Legrand, M. Blondel and P. Magnier, High-pressure 4^{TT} proportional counter for internal conversion electron measurements (¹³⁹Ce, ¹⁰⁹Cd, ⁹⁹Tc^m), Nucl. Instr. and Meth. <u>112</u>, 101-102 (1973)
- [37] H.H. Hansen and D. Mouchel, Internal conversion coefficient for the 165.8 keV transition in ¹³⁹La, Z. Physik A <u>276</u>, 303-307 (1976)
- [38] E. Schönfeld, R. Brust, H. Greupner, Zur Anwendung der Efficiency Tracer Technique bei der absoluten Aktivitätsbestimmung im ASMW, Isotopenpraxis 11, 347–352 (1975)
- [39] A. Chyliński and T. Radoszewski, The 4πβ-γ and 4π(x,e)-γ coincidence method with liquid scintillation counter for counting β-particles, Auger-electrons or x-rays, Nukleonika 20, 469-482 (1975)
- [40] E. Schönfeld, Measurement of disintegration rates of radioactive nuclides by the 4πβ-γ-coincidence method in the DAMW, Isotopenpraxis 7, 262-267 (1971)
- [41] J.G.V. Taylor and A.P. Baerg, Radioactivity standardization in Canada, Radioactivity calibration standards, ed. W.B. Mann and S.B. Garfinkel, NBS Special Publication 331, 69–77 (1970)
- [42] A.P. Baerg, Pressurized proportional counters for coincidence measurement, Nucl. Instr. and Meth. <u>112</u>, 95–99 (1973)
- [43] J. Plch, J. Zderadička, V. Zídek and L. Kokta, A versatile system for absolute activity measurement, ÚVVVR-Report No. 3, 67 p. (1975)
- [44] E. Kerö, Random coincidence simulator, IAEA Laboratory Activities, Fourth Report, Technical Reports Series No. 77, Vienna (1967)
- [45] E. Schönfeld, Ein Vergleich der Methoden zur Bestimmung der Koinzidenzauflösungszeit an Koinzidenzmesseinrichtungen für die Messung der Zerfallsrate radioaktiver Nuklide, Intern. J. Appl. Radiat. and Isotopes 19, 747–751 (1968)
- [46] E. Celen and E. De Roost, A simple test generator for measurement of dead times and resolving times, BCMN Internal report No. RN/4/74, 10 p. (1974)
- [47] A.P. Baerg, Variation on the paired source method of measuring dead time, Metrologia 1, 131–133 (1965)
- [48] J.-J. Gostely and O. Noverraz, Digital selector of coincidences for the absolute measurement of radioactivity, Nucl. Instr. and Meth. <u>131</u>, 69-79 (1975)
- [49] J.W. Müller, The source-pulser method revisited, Rapport BIPM-76/5, 16 p. (1976), and Recueil de Travaux du BIPM, vol. 5, 1975-1976
- [50] Une méthode simple pour mesures précises de temps morts, Rapport BIPM-69/3, 3 p. (1969)
- [51] Une nouvelle méthode pour la mesure des temps morts, Rapport BIPM-69/11, 3 p. (1969)
- [52] Dead-time problems, Nucl. Instr. and Meth. <u>112</u>, 47-57 (1973), and Recueil de Travaux du BIPM, vol. 4, 1973-1974
- [53] D.R. Powell and J.R. Macdonald, A Fortran program for generalized nonlinear least squares, Computer J. 15, 148–155 (1972), revised 1975

- [54] V.V. Shaha and P.K. Srivastava, Digital data recording system for the 4πβ-γ coincidence apparatus, Bhabha Atomic Research Centre, Bombay, BARC/1-329, 20 p. (1975)
- [55] S.B. Garfinkel, W.B. Mann and J.L. Pararas, The National Bureau of Standards 4πβ-γ coincidence-counting and γ-ray intercomparator automatic sample changers, Nucl. Instr. and Meth. <u>112</u>, 213-217 (1973)
- [56] IAEA Laboratory Activities, Technical Reports Series No. 98, p. 15 (1969)
- [57] I.W. Goodier, E. Celen and W. Zehner, Further studies on the measurement of cerium-139, BCMN Internal Report No. RN/12/75, 20 p. (1975)
- [58] M. Lainé, J.-P. Pérolat, J. Bouchard et Y. Le Gallic, Les coincidences 4πβ-γ au Laboratoire de métrologie de la radioactivité, Rapport CEA-R-4131, 74 p. (1971)

14