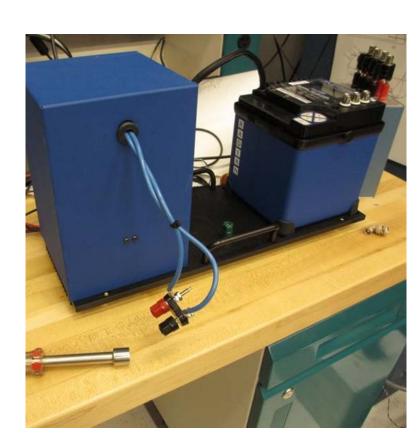
CCEM WGLF Meeting (hybrid) 8th March 2023

Murray Early, WGLF Chair


3. Progress on CCEM Key Comparisons

Reports regarding:

- 3.1 CCEM-K5.2017: primary power (Gert)
- 3.2 CCEM-K6a (3 V to 1 MHz) and -K9 (500 V to 100 kHz): AC-DC voltage transfer (Karl-Erik) [future star?]
- 3.3 CCEM-K6c (3 V to 100 MHz): RF-DC transfer (Karl-Erik) [future star?]
- 3,4 CCEM-K13: harmonics of voltage and current (Karl-Erik)
- 3.5 CCEM-K12.2025 (10 mA, 5A to 10 kHz) AC-DC current transfer (Ghislain)

CCEM-K5.2017 Power

- Measurand: Primary power at 120 & 240 V, 5 A, 53 Hz; phase 0° , \pm 60° , \pm 90° ,
- Support group: PTB (pilot measurements),
 CENAM (logistics) and VSL (analysis and reporting)
- Other participants: NIST, INMETRO, LNE, SP, NIM, NMIA, VNIIM, NMISA
- Draft A report: Feb 2025, Draft B mid 2025?
- Good results but low uncertainty generates outliers (6/100)

CCEM-K6.a/K9 AC/DC Voltage

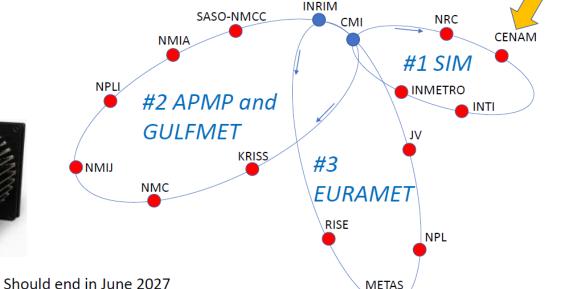
- K6.a: 3 V, 10 Hz 1 MHz
- K9: 500 V and 1000 V, 10 Hz − 100 kHz
- Support group: RISE (logistics), INTI (reporting), NIST (pilot measurements),
 PTB and NMIA
- Other participants: RISE, INTI, PTB, NMIA, NIST, NRC, JV, NMIJ, NIM, LNE, NMISA, INMETRO, VNIIM
- Running in parallel with K6c
- Started end of 2018, affected by several device failures and COVID delays
- Measurements complete June 2024, last reports received Dec 2024, results with INTI for analysis

CCEM-K6.c AC/DC Voltage

- K6.c: 3 V, 500 kHz 100 MHz
- Artefact: NIST PMJTC (future availability of devices?)
- Support group: RISE (protocol), NIST (pilot measurements), PTB
- Other participants: NRC, NIM, LNE, VNIIM, A*STAR
- Running in parallel with K6a/K9
- Measurements complete June 2024, last reports received Dec 2024, results with INTI for analysis

CCEM-K13 Power Harmonics

- Sine wave at 120 V, 5 A, unity power factor
- IEC62053-21 signals: voltage 10%, current 40%, 5th harmonic
- Field-recorded waveform
- Artefact: Fluke 6105 (no longer supported by Fluke)
- Support group **NIST** (technical support), **NRC**, **RISE** (logistics), **NPL** (analysis and report), **NIM** (pilot measurements)
- Other participants: PTB, NMIA
- Started end of 2018, affected by device failures, COVID delays, definition issues
- Final measurements now being carried out by pilot (NIM), to report in Jun
- participant results to be sent asap and with deadline 31 May 2025.
- Analysis may not be simple
- NB: difficult to support RMO follow-up: EURAMET, GULFMET (supplementary for now)


CCEM-K12.2025 AC-DC Current

- 10 mA and 5 A, at 10 Hz, 55 Hz, 1kHz, 10kHz, 20kHz, 50kHz, and 100kHz
- Champion: Ghislain Granger (NRC)
- Support group: NRC, CENAM, INRIM, NMC, NMIJ, NPL, NPLI, SASO-NMCC, CMI, JV, KRISS, and INTI (12 of 16 participants!) – add PTB to #3 loop
- Not using ATA Carnet

January 2025: Circulation Starts

3 weeks measurements + (4±2) weeks transportation

METAS

Now

4. New CCEM Key Comparisons

Reports regarding:

- 4.1 Update on preparation for CCEM-K3.X, 10 mH inductance (Luca/Yan Yang)
- 4.2. Update on preparation for high voltage comparison (K14?) (Jari)

CCEM-K3 Inductance (10 mH at 1 kHz)

Organisation:

- PTB characterisation of standards, pilot laboratory measurements
- NIM logistics, scheduling, transportation and participant report submission
- NMIA comparison protocol, KCDB registration, analysis and reporting

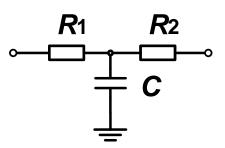
14 Laboratories:

AFRIMETS NMISA

• APMP NIM, NMIA, KRISS

COOMET VNIIM

• EURAMET INRIM, LNE, PTB, VTT, NPL


• GULFMET EMI

• SIM INMETRO, NIST, NRC

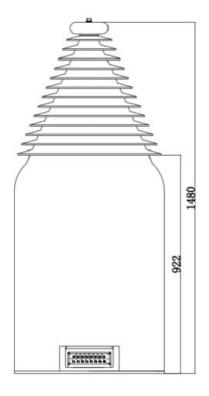
CCEM-K3X Inductance

- Artefact: GR 1482 inductors needs thermosetting, airline transport not viable
- Investigations research on temperature changes (Luca, Florien). Possibly the dominant effect is humidity rather than temperature?
- Alternative option: use simulated inductors developed by NIM (Yan Yang) that perform remarkably well but unproven in comparison process

Proposal – agreed!

Loop 1: EURAMET

- Land transport GR & NIM inductors in <u>powered</u> enclosures
- Target uncertainty <10 μH/H


Loop 2-4: Other RMOs

- Air transport GR & NIM inductors in <u>unpowered</u> enclosures
- Target uncertainty <10 μH/H?

CCEM-K14X High Voltage

- Measurand: AC voltage ratio error and phase displacement:
- Artefacts: two custom dry two-stage transformers
 - 20 kV:100 V (200:1), available
 - 100 kV:100 V (1000:1), June 2025 Provided by CEPRI, China
- Champion: Jari Hällström, VTT MIKES,
- Task group: VTT, NMIA, RISE, INTI, VNIIMS

CCEM-K14X High Voltage

- About 30 NMIs with CMCs, propose two parallel loops
 - CCEM-K14: VTT, NMIA, PTB, VSL, RISE, CEPRI
 - EURAMET.EM-K14: PTB, VSL, VTT, RISE, CEPRI
 - PTB acts as pilot lab for both comparisons
 - PTB, RISE and VTT will take part on both comparisons
- Timing:
 - protocol March 2025,
 - first pilot measurements June August,
 - final pilot measurements late 2027 early 2028

4.3: Forward Look on Comparisons

Reminder of previously established principles (<2015?)

- 10 key quantities, 1 4 values in each quantity
- Discipline of NOT increasing the number of quantities without a strong case
- Review the values within a quantity
- Interval between comparisons typically 10 years, based on evolution in laboratories, some quantities longer or even no future comparison scheduled
 - Suggest 'start to start' should be 15 to 20 years?
- Choices also strongly influenced by the activities in the RMOs

4.3: New Comparisons (updated 2021 plan)

CCEM Key Comparisons (March 2025)	Repeat	Next (Support)	Start	RMO
K14: high ac voltage	15	2023	2025	?
K12: ac-dc current, 10mA/5A	15	2023	2025	Υ
K3: inductance, 10mH	20	2021	2025	Υ
K8: dc voltage ratio?	20	2025	2027	?
K11: low ac-dc voltage, 10mV/100mV	15	2025	2027	Υ
K2: high dc resistance, $10M\Omega$, $1G\Omega$ and $1T\Omega$?	15	2025	2027	Υ
K7: ac voltage ratio, 1kHz	20	2027	2029	?
K5: single phase ac power, 50/60Hz	15	2029	2031	Υ
K6.a: mid ac-dc voltage, 3V to 1MHz	15	2029	2031	Υ
K6.c: RF-dc voltage, 3V to 100MHz	15	2029	2031	Υ
K9: high ac-dc voltage, 500V/1000V (was K6.b)	15	2029	2031	Υ
K4: capacitance, 10pF/100pF	20	2033	2035	Υ

4.3 Forward Look on Comparisons

4.3.1 K8: DCV to 1 kV feedback (NMIA, NRC, NMC, VSL)

- Form support group (add INRIM, EMI, RISE, KRISS)
- Champion: David Aviles (NRC)
- Need to find a suitable artefact (resistive divider)

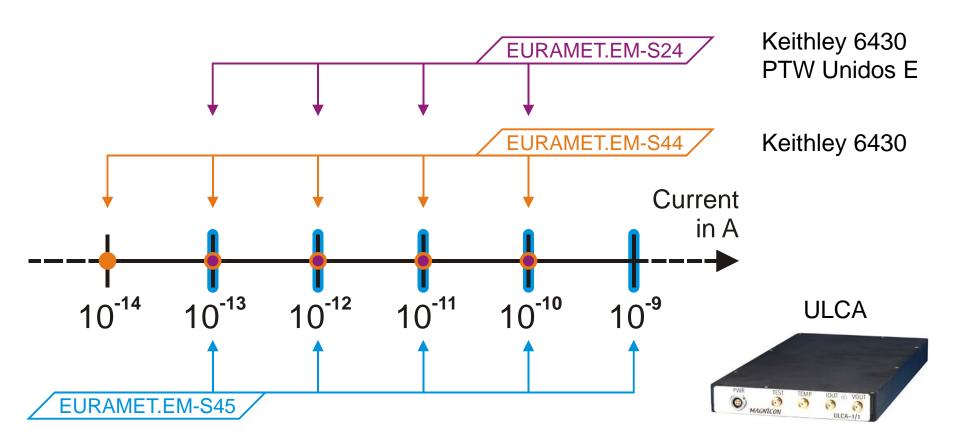
K8 (DCV)	Proceed/Artefact	Support	Participate
NMIJ	×	×	*
METAS		×	✓
NMISA		×	*
NRC	?	\checkmark	✓
NIST	✓	×	✓
SASO-NMCC		?	✓
INMETRO			
CMI		×	*
NPLI	✓	×	✓
INRIM			

4.3.2 Low AC-DC Voltage (K11) – discuss possibility

- Does BIPM Onsite PJVS displace this? No need high frequency measurements
- Form support group and proceed

4.3 Forward Look on Comparisons

K11 (mV AC-DC V)	Proceed	Support	Participate
NMIJ	×	×	✓
METAS	✓	×	✓
NMISA	✓	×	✓
NRC		×	✓
NIST	\checkmark	×	✓
SASO-NMCC			*
INMETRO		×	✓
CMI	\checkmark	×	✓
NPLI	✓	×	✓
INRIM	✓	✓	✓

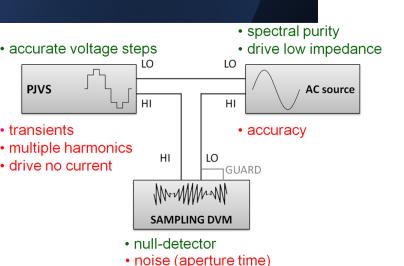

4.3 Forward Look on Comparisons

- 4.3.3 Future High Resistance ($T\Omega$?, K2.X) or Small Current? [Nobu-Hisa]
- 4.3.4 Small current comparison possibility: report on EURAMET.EM-S45 [Rolf]
- \bullet Agree to proceed with K2 include 1 T Ω as optional
- Basis for support group: NMIJ, CENNAM, EMI, KRISS
- Consider future low current supplementary?

K2 (high R)	Support	Participate	> 1 GΩ
NMIJ	✓	✓	\checkmark
METAS	×	✓	?
NMISA	✓	✓	\checkmark
NRC	×	✓	\checkmark
NIST	×	✓	\checkmark
SASO-NMCC	?	✓	\checkmark
INMETRO	×	✓	×
CMI	×	✓	\checkmark
NPLI	✓	✓	\checkmark
INRIM			

Motivation for a new comparison

- Nominal source currents: 100 fA, 1 pA, 10 pA, 100 pA, 1 nA
- Target uncertainty: 1·10⁻⁶


4.3.1 Future magnetic quantities

 basis for support group to make proposal in 2027

4.3 Forward Look on Comparisons

M-KX (flux density)	Proceed	Support	Participate
NMIJ	×	×	×
METAS			
NMISA	*	×	×
NRC		×	×
NIST			
SASO-NMCC	×		×
INMETRO			
CMI	✓	✓	✓
NPLI	✓	×	✓
INRIM	\checkmark	✓	✓

5. BIPM Comparisons

CMRR

- 5.1 Status of on-site Josephson comparison of low frequency ac voltage [Stephane] see Michael's presentation
- Extensive pilot studies to resolve systematic errors in quantum systems!

NMIJ – 2015 CENAM – 2016 PTB – 2017, 2018, 2021, 2022, 2023, 2024 with the support of KRISS, NMIA and VNIIM NPL – 2018 KRISS – 2018, 2022, 2023, 2024 NIST – 2024

 Type A: 2 to 5 parts in 10⁸ demonstrated for 0.75 V - 1 kHz

Ready to commence (two per year) – more resource needed?

6. WGLF Matters

Efficiency of comparison reviews

- Thanks to staff of the following institutes: PTB, INMETRO, NMIA, METAS, NMIJ, KRISS, NMC, INRIM, MSL, CENAM, NIST, RISE, MIKES, VSL, NMISA, and INTI for providing competent reviews
- Still requires some moderation by WGLF Chair
- Strongly encourage RMOs to appoint their own third-party reviewer before submitting to WGLF?

6. WGLF Matters

Anyone want to raise a relevant technical matter?

e.g. do we eventually want an onsite Pulse JVS or JAWS comparison? (higher frequency acv)

7. RMO Comparisons

Reports from RMOs will be tabled in working group documents.

NB: RMO key comparisons must be linked to CCEM key comparison – hence two calculations:

- Calculate comparison reference value (and participant's deviations and uncertainties)
- 2. Using results of linking labs to calculate results relative to the CCEM KCRV (deviations and uncertainties)

Members

BIPM, CENAM, VNIIM, METAS
INMETRO. KRISS, LNE, INRIM
NIM, NIST, NMIA, NMC, A*STAR
NMIJ/AIST, NPL, NRC, PTB
RISE, VSL, VTT/MIKES

8. WGLF Membership

ToR: Membership

Membership of the WGLF is normally restricted to NMIs who are members of the CCEM and who have substantial programs and expertise in electromagnetic standards and measurements at low frequencies or at DC. Individual scientists from member NMIs can also be considered for membership. Members are appointed by the President of the CCEM, in consultation with the WGLF chairperson. In addition, the WGLF chairperson may invite guests on a one-off basis from other Member States or Associates.

Thank you...