CCTF- Technical Exchange meeting of WG TAI and UTC laboratory Collegues 21st Jan 2025

"Low-Cost GNSS Receivers"

Performance of GNSS receiver modules and TIC with UTC(NPLI)

Dr. Bharath Vattikonda Senior Scientist <u>bharath.v@nplindia.res.in</u> (CSIR-NPLI, New Delhi)

What is expected from a Low-Cost GNSS timing receiver

- ➤ Less costly (few 100s of dollars)
- Dual frequency (preferable)
- Should provide data output (formats: Proprietary/Rinex/CGGTTS)
- > Must have an option for 1 PPS and 10 MHz input
- ➤ Should have an option for 1 PPS output
- Input from atleast one Antenna

Purpose

- Reliable time traceability between {UTC & UTC(k)} / {UTC(k) & remote site}
- Small size, Low power consumption
- Easy integration into the system

Our goal

> NPLI- Disciplined Oscillator: To develop remote time traceable system with UTC(NPLI)

A few low cost GNSS Timing receiver chips

Ublox ZET-F9T-10B

Septentrio Mosaic-T

Sky Traq PX11255-01

NavIC (L5) + GPS (L1)

I. Dual frequency, Multi constellation receiver chipset

CCTF- TE 21st Jan 2025

184 channel

Signals

- GPS L1C/A, L5
- GLO L1OF
- GAL E1B/C, E5a BDS B1I, B1C, B2a
- QZSS L1C/A, L5
- NavIC L5
- SBAS L1C/A

➢ No Option for Input 10 MHz

Output data format

- 1. NMEA
- 2. UBX

Performance of ublox(TP1) 1pps out w.r.t UTCK

➢ Ublox ZET-F9T-10B

> Intentional offset added to observe the quantization error

➤ Ublox ZET-F9T-10B

➤ Ublox ZET-F9T-10B

- ➢ Good product with options for external event inputs (1PPS).
- ➤ Can perform Common View among F9T 10B receivers chips.
- > We tried and failed to convert **Ubx data format** to Rinex or CGGTTS

Septentrio Mosaic-T

▶ 448 channels

Signals

- GPS L1C/A, L1PY, L2C, L2PY,L5
- GLONASS: L1CA, L2CA, L3 CDMA
- GAL E1B/C, E5a, E5b, E5
- BDS B1I, B1C, B2a, B2I, B3
- QZSS L1C/A, L2C, L5
- NavIC L5
- Option for Input 10 MHz
- ➢ Option for input 1PPS
- Output data format
 - 1. NMEA
 - 2. SBF

GPS, Glonass and Galileo output Timing Jitter less than ± 1 ns

Common View Time Transfer:

Common clock configuration at one location

- As we have 45 m antenna cable we power up antenna using a Separate DC source 12V.
- Block the reverse DC voltage supply to other receivers using DC blockers. Allow only RF signals.

 Easy to setup, configure, and generate various formats of data including CGGTTS data files directly session wise (@ 15 minutes).

- GPS time at Lab: Moasic_T01 through L3P. (Each point corresponds to Sum of all satellite weighted refsys per epoch)

- GPS time at Lab: mosaic_T02 through L3P. (Each point corresponds to Sum of all satellite weighted refsys per epoch)

> SkyTraq PX11255-01

- ➢ GPS L1 C/A
- NavIC L5, GAGAN
- ➢ 56 channel
- Raw output

> Quadratic fitting for the time difference

➤ SAW tooth error 20 ns

III. Single frequency NavIC receiver chipset SkyTraq PX11255-01

CCTF- TE 21st Jan 2025

CCTF- TE 21st Jan 2025

On board satellite Clock corrections

Tropospheric corrections

Ionospheric corrections

Parameter	Uncertainty	
1 pps quantisation error	7.2 ns	
On board satellite clock	3.8 μs	
Tropospheric effect	6.4 ns	
Ionospheric effect	30 ns	
Total	3.8 μs	

Septentrio Mosaic-T module

A loss of the loss

https://gnss.store/septentrio-gnss-modules/359-358-elt0741.html#/57-connector-sma

Unit price: 350 euro

Test setup

GPS output w.r.t UTC(NPLI)

MTIE plot

Antenna

Performance comparison with Polarx 5TR

Observations:

Internal oscillator seems not locked with external input of 10 MHz in mosaic T module

UTC(NPLI) - GPS time at Lab: mosaic_TS through L3P. (Each point corresponds to Sum of all satellite weighted refsys per epoch)

- GPS time at Lab: TTLab_5TR1 through L3P. (Each point corresponds to Sum of all satellite weighted refsys per epoch)

Low-cost Time Interval Measurement

CCTF- TE 21st Jan 2025

Tried using Time to Digital Converters (TDC) for TIM

Software timestamped Time of Flight Measurement devices

Texas Instruments TDC7200

TAPR - TICC (2 TDC7200 used)

Amu – AS6500

Low-cost Time Interval Measurement

CCTF- TE 21st Jan 2025

	TDC7200	TAPR TICC	AS6500
Range	Mode 1: 12 ns to 500 ns Mode 2: 250 ns to 8 ms	0 to 16 s	4 ns to 6.5 ms
Single shot Resolution	55 ps	60 ps	20 ps
Jitter	± 50 ps	± 50 ps	± 70 ps
Ext Clk Ref In	1 to 16 MHz	1 to 16 MHz	2 to 12.5 MHz

Conclusion

- After trying various receivers, we are currently using Septentrio Mosaic-T for NPLI-DO application
- > Easy to use with flexible direct data formats output in BIPM format.
- ➢ Low cost 350 Euro

Thank you

