

Challenges and Opportunities in Sensor Network Metrology (EURAMET TC-IM 1551)

Martin Koval

FORUM-MD: Workshop on Metrology for Complex Sensor Networks (11 Feb 2025 - 12 Feb 2025) The aim of the project is to foster the development of a sensor network metrology (SNM) in EURAMET. The use of SNM ranges from smart buildings, smart cities, smart grids to autonomous driving, environmental monitoring and many more. This wide range of application areas offers novel opportunities in metrology but also leads to several new challenges.

The project will bring together activities and developments related to sensor network metrology to

- Share knowledge, experience, and research results;
- Discuss running and potential future research projects;
- Organize seminars and provide advice for TCs, EMNs and EURAMET Members.

TC-IM 1551 (Project description)

Project TC-IM 1551

COORDINATING INSTITUTE:

• **CMI (**Czech Republic)

PARTICIPATING PARTNERS:

- **PTB** (Germany)
- VTT-MIKES (Finland)
- NPL (United Kingdom)
- **RISE** (Sweden)
- SMD (Belgium)
- GUM (Poland)

TC-IM 1551 (Project partners)

	Name		Description		
V	VP1	Ongoing survey for existing research on SNM	This WP will summarize and extract information from standards, normative documents, and realizations for the WPs of this project and for future needs.		
WP2		Challenges and opportunities in SNM	This WP should identify continuously challenges and opportunities in SNM.		
V	VP3	Knowledge transfer from current ongoing projects	Currently, ongoing projects which deal with Sensor Networks are focused on new approaches. This WP focuses on knowledge transfer a summary of the ongoing projects and creating communication channels for that.		
v	VP4	Coordination and dissemination	WP deal with the coordination and dissemination of all relevant outcomes of WPs. The outcomes could be disseminated via workshops, webinars, guides, etc.		

TC-IM 1551 (WPs)

Network of Sensors: A collection of independent sensors that collect data but do not communicate with each other. Each sensor operates separately.

Sensor Network: An intelligent network of interconnected sensors that interact, share information, and collaborate to optimize the process.

Ŧ

Network of sensors

Sensor Network(s)

What is Sensor Network?

Backbone of all processess which need to be monitored and optimized

What is Sensor Network?

The role of Sensor Network

Basic model of Sensor Network

Inputs of Sensor Network

The different types of topology

Topology in real field

Topology of Sensor Network

(Big) Data 5V model

Data processing of Sensor Network

Uncertainty

Monte Carlo

Shannon's Entropy

Fuzzy Theory

Bayesian Statistical Models

Data preprocessing

The chain is only as strong as the weakest link.

Environment

Output

- Low cost sensors (energy efficient),
- Data quality,
- ML/AI,
- Data Transmission and Latency,
- Self verification/monitoring,
- Remote calibration,
- Cybersecurity,

Chal	lenges f	for ((near)
	futu	re	

This work was partly funded by resources granted to the Czech Metrology Institute by the Ministry of Industry and Trade within the frame of internal research task IF2403601101 and UTR25E601102.

Ing. Martin Koval , Ph.D. Czech Metrology Institute

Digitalization in metrology mobil: + 420 725 504 983 e-mail: <u>martin.koval@cmi.gov.cz</u>

