

DDEP evaluation of Cs-137

Sylvain Leblond

CCRI Webinar

Nuclear data evaluation for radionuclide metrology
5 December 2024

Decay data of ¹³⁷Cs overview

Initiation of an evaluation project

- In 2021 a joined initiative was proposed to re-evaluate the ¹³⁷Cs decay data
 - Independent evaluation processes from ENSDF, DDEP and the CTBTO
 - Previous evaluation works were performed in 2006/2007
 - Data were known to be inconsistent
 - No consensual agreement was found between evaluators for decades
- As part of my training as new evaluator it was decided that I would take care of the DDEP evaluation
 - First independent evaluation work
 - Started late 2021, finalised in may 2023
 - Large support from the DDEP collaboration, especially Alan L. Nichols who performed the review
- The ¹³⁷Cs evaluation has been published
 - On the LNHB website in September 2023
 - In a peer-review journal DDEP re-evaluation of the radioactive decay scheme of ¹³⁷Cs, Applied Radiation and Isotopes 206, 111191 (April 2024)

Story of the ¹³⁷Cs discovery

- In 1941 at Berkeley
 - Margaret Melhase (undergraduate student) and Glenn Seaborg
 - First chemical extraction of radioactive Caesium
 - Produced by thermal neutron induced fission on ²³⁵U
- Two different destinies
 - Glenn Seaborg shared 1951 Chemistry Nobel for ²³⁹Pu discovery
 - Margaret Melhase could not pursue an academic career

(1941)

(1950)

- In 1969 Glenn Seaborg wrote to Margaret Melhase to ask for details on her chemical separation
 - "My kids will never get over the thought that Glenn Seaborg had to ask anybody anything about radioisotopes least of all their mother!"
 - "I hope you have succeeded in convincing your kids that you made an important contribution to the radioisotope field (resulting in many practical applications) during those days at Berkeley"

Source D.D. Patton How cesium-137 was discovered by an undergraduate student

J. Nucl. Med., 48 (1999), p. 18N

A very impactful discovery

- Since Margaret discovery
 - More than 80 000 publications in a wide range of applications

- One of the main fission products
 - Dominating medium-lived fission product
 - Primary source of penetrating gamma radiations from spent fuel
 - One of the most significant contamination radionuclide remaining after a nuclear disaster

Decay overview of ¹³⁷Cs

- A β⁻ decay to ¹³⁷Ba
 - Populates ground & excited states
 - Half-life around 30 years
 - Total Q-value close to 1176 keV
- Emissions
 - Two main β- branches
 - Ground state (E_{max} ~ 1176 keV)
 - Second excited state (E_{max} ~ 514 keV)
 - A very dominant 662 keV gamma emission
 - Good and easy-to-produce calibration source

- **Decay data status**
- Latest ¹³⁷Cs decay data evaluations
 - DDEP
 - R.G. Helmer and V.P. Chechev (2006)
 - ENSDF
 - E. Browne and J.K. Tuli (2007)

	DDEP	ENSDF
$T_{1/2}(y)$	30.05 (8)	30.08 (9)
$I_{\beta}(11/2^{-})$ (%)	94.36 (28)	94.7 (2)
$I_{\beta}(3/2^{+})$ (%)	5.64 (28)	5.3 (2)
l _γ (%)	84.99 (20)	85.1 (2)

Decay data status

- Latest ¹³⁷Cs decay data evaluations
 - DDEP
 - R.G. Helmer and V.P. Chechev (2006)
 - ENSDF
 - E. Browne and J.K. Tuli (2007)

	DDEP	ENSDF	
T _{1/2} (y)	30.05 (8)	30.08 (9)	
$I_{\beta}(11/2^{-})$ (%)	94.36 (28)	94.7 (2)	
$I_{\beta}(3/2^{+})$ (%)	5.64 (28)	5.3 (2)	
Ι _γ (%)	84.99 (20)	85.1 (2)	

Can we improve the recommendations? (focus on the half-life)

2 Evaluation of ¹³⁷Cs Half-life

At the beginning: collecting data

- Abundant bibliography
 - More than 75 publications
 - From 1948 to 2016
 - Different experimental methods
 - Many languages

At the beginning: collecting data

- Abundant bibliography
 - More than 75 publications
 - From 1948 to 2016
 - Different experimental methods
 - Many languages
- How to deal with a large dataset?
 - Should all the references be considered?
 - Are all reported uncertainties comparable?
 - Are all publications independant?

Some answers in DDEP guidelines

- Private communications are discarded
- Treatment of experimental uncertainties
 - Measurement without uncertainty are discarded
 - Uncertainty should be reported at 1 σ confidence level
 - Uncertainty should be symmetric
 - Quadratic sum of Type A and B is considered

6.1 Rules for evaluation

All intermediate stages in the compilation and evaluation of a decay parameter are not presented in detail in order to avoid unnecessary complexity. The main stages comprise the following:

- critical analysis of published results and, if necessary, correction of these results to
 account for more recent values hitherto unavailable to the original experimentalists; as
 a rule, results without associated uncertainties are discarded, and the rejection of values
 is documented:
- data obtained through private communications are only used when there is no published article available;
- adjustments may be made to the reported uncertainties;
- · only one result, generally the latest one, is taken into account per laboratory (or author);
- recommended values are derived from an analysis of all available measurements (or theoretical considerations), along with the standard deviations corresponding to the 1 σ confidence level.

Constructing a meaningful dataset

- Private communications are discarded
- Treatment of experimental uncertainties
 - Measurement without uncertainty are discarded
 - Uncertainty should be reported at 1 σ confidence level
 - Uncertainty should be symmetric
 - Quadratic sum of Type A and B is considered
- Only one publication per author / laboratory is considered
 - To avoid systematic biases (analysis, source contamination...)
 - Requires to identify / construct the most reliable value
 - Important: identify the correlation between reported measurements
- Look for dependancies of measurements on physical constants
 - Correct them if possible with latest recommendations

6.1 Rules for evaluation

All intermediate stages in the compilation and evaluation of a decay parameter are not presented in detail in order to avoid unnecessary complexity. The main stages comprise the following:

- critical analysis of published results and, if necessary, correction of these results to
 account for more recent values hitherto unavailable to the original experimentalists; as
 a rule, results without associated uncertainties are discarded, and the rejection of values
 is documented:
- data obtained through private communications are only used when there is no published article available;
- · adjustments may be made to the reported uncertainties;
- only one result, generally the latest one, is taken into account per laboratory (or author);
- recommended values are derived from an analysis of all available measurements (or theoretical considerations), along with the standard deviations corresponding to the 1 σ confidence level.

A first dataset

- Following all the previous recommendations
 - From initially 75 to 23 references selected
 - T_{1/2} varying from 26 to 33 years
 - Uncertainties from 0.011 to 3 years

A first dataset

- Following all the previous recommendations
 - From initially 75 to 23 references selected
 - \blacksquare T_{1/2} varying from 26 to 33 years
 - Uncertainties from 0.011 to 3 years
- Statistical test of the distribution

$$\frac{\chi^2}{(n-1)} = \frac{u_{ext}(\bar{M})^2}{u_{int}(\bar{M})^2}$$

$$\overline{M} = \frac{\sum_{i=1}^{m_i}/u_i^2}{\sum_{i=1}^{n_i}/u_i^2} \qquad u_{int}(\overline{M}) = \sqrt{\frac{1}{\sum_{i=1}^{n_i}}}$$

$$u_{ext}(\overline{M}) = \sqrt{\frac{\sum (m_i - \overline{M})^2 / u_i^2}{(n-1)\sum 1 / u_i^2}}$$

- Discrepant dataset
- At least one of the reported uncertainty cannot be trusted

A first dataset

- Following all the previous recommendations
 - From initially 75 to 23 references selected
 - $T_{1/2}$ varying from 26 to 33 years
 - Uncertainties from 0.011 to 3 years
- Statistical test of the distribution

$$\frac{\chi^2}{(n-1)} = \frac{u_{ext}(\bar{M})^2}{u_{int}(\bar{M})^2}$$

$$\overline{M} = \frac{\sum_{i=1}^{m_i}/u_i^2}{\sum_{i=1}^{m_i}/u_i^2} \qquad u_{int}(\overline{M}) = \sqrt{\sum_{i=1}^{m_i}}$$

$$\overline{M} = \frac{\sum_{i=1}^{m_i} / u_i^2}{\sum_{i=1}^{1} / u_i^2} \qquad u_{int}(\overline{M}) = \sqrt{\frac{1}{\sum_{i=1}^{1} / u_i^2}} \qquad u_{ext}(\overline{M}) = \sqrt{\frac{\sum_{i=1}^{m_i} / u_i^2}{(n-1)\sum_{i=1}^{1} / u_i^2}}$$

- $\chi^2 \sim 11 \gg \chi_{crit}^2 \sim 1.9$
 - Discrepant dataset
 - At least one of the reported uncertainty cannot be trusted

How to proceed further?

Unweighted average $T_{1/2} = 30.09$ (8) a

	DDEP	ENSDF
T _{1/2} (a)	30.05 (8)	30.08 (9)

Dataset refinement

- Critical analysis of each publication
 - Evaluate possible experimental bias
 - Evaluate uncertainty budget assessment
- Support from previous works
 M.J. Woods, The Half-life of ¹³⁷Cs A critical Review, NIM A286 (1990)
- Selected publications

■ *Martin et al.*, (1990)

■ Schrader et al., (2010)

■ *Bellotti et al.*, (2012)

■ Juget et al., (2016),

■ Unterweger et al., (2020)

GEC
$$T_{1/2} = 30.174 (11) a$$

CRNL
$$T_{1/2} = 30.029 (12) a$$

PTB
$$T_{1/2} = 30.06$$
 (4) a

INFN
$$T_{1/2} = 29.96$$
 (8) a

IRP
$$T_{1/2} = 29.994 (29) a$$

NIST
$$T_{1/2} = 29.88 (15) a$$

Publication date

Removal of Dietz et al.

- (mass spectrometry)
- Smallest reported uncertainty yet discrepant with other results
- Possible contaminants are discussed but not quantified
- Increase of the uncertainty of Martin et al. (ionization chamber)
 - Very small uncertainty with regards to Schrader and Juget
 - Longer measurement time but the uncertainty dominated by other components
- Final dataset considered

■ Dietz et al., (1973)	GEC	T _{1/2} = 30.174 (11) a
■ <i>Martin et al.</i> , (1990)	CRNL	$T_{1/2} = 30.029$ (22) a

- Schrader et al., (2010) PTB $T_{1/2} = 30.06$ (4) a
- Bellotti et al., (2012) INFN $T_{1/2} = 29.96$ (8) a
- Juget et al., (2016), IRP $T_{1/2} = 29.994$ (29) a
- Unterweger et al., (2020) NIST $T_{1/2} = 29.88$ (15) a

- A final dataset of 5 measurements
 - Consistent: $\chi^2 \sim 0.8 < \chi^2_{crit} \sim 3.3$
 - Unweighted mean $T_{1/2} = 29.984$ (30) a
 - Weighted mean $T_{1/2} = 30.018 (16)_{int} (14)_{ext} a$
 - Recommended uncertainty extended to match *Martin et al.* (1990)

$$T_{1/2} = 30.018$$
 (22) a

	DDEP	ENSDF	This work
T _{1/2} (a)	30.05 (8)	30.08 (9)	30.018 (22)

3 Conclusions

(and outlooks)

Re-evaluation of ¹³⁷Cs decay data

- A complete re-evaluation of ¹³⁷Cs decay data was performed
 - A two years "*training*" project
 - Following the DDEP evaluation methodology
 - Improvements on the half-life and branching ratio evaluation
 - Involves arbitrary choices based on evaluator opinion
 - Complete analysis available online on LNHB website (41 pages)

http://www.lnhb.fr/home/nuclear-data/nuclear-data-table/

Comments on evaluation ¹³⁷Cs

¹³⁷Cs - Comments on evaluation of decay data May 2023

Outlooks

- Recommendation for new measurements
 - Half-life
 - Decrease the dependency on a single measurement (Martin et al.)
 - Emission intensity of 662 keV gamma
 - Improve the uncertainty on the recommended value (small dataset)

