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1.1 Basic Principles

» Different techniques

By leveraging the quantum states of elementary particles, high-precision measurement of physical
quantities is achieved through manipulation of energy levels, quantum coherent superposition, and

entanglement, exceeding the accuracy limits of classical methods.

Energy level manipulation Quantum coherence Quantum entanglement

Electron state transition
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1.1 Basic Principles
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1.2 Development Overview
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1.3 Technology Advantages

Quantum sensing provides higher accuracy, sensitivity, resolution, measurement range,
non-Invasive /non-destructive or self-calibration capability , surpassing the performance
limits of classical sensors.
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2.1 Gravity Sensing

Existing subsurface survey and mapping tools can only see the top layer, measure inconsistently
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2.1 Transportable Atomic Gravimeter at NIM

NIM-AGRb2 transportable atomic gravimeter
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2.1 Transportable Atomic Gravimeter at NIM

2023 11t International Comparison of Absolute Gravimeter(ICAG-2023) Comparison Final Report (2024.10)
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2.2 Magnetic Field Sensing

HOH Traditional sensors are affected by environmental and operational conditions. The quantum
VY Re'“:'i:::‘;nt sensor measures can detect extremely weak magnetic fields with high accuracy and sensitivity,
1 a and are less susceptible to environmental interference.
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Traditional magnetometer: based on electromagnetic induction Atomic or NV magnetometers : based on energy level
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2.2 Atomic magnetic sensing at NIM

The traceability of the unit Tesla in a ultra-low Compact atomic magnetometer with MEMS cell
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2.2 Atomic magnetic sensing at NIM

Vector atomic magnetometer with artificial
neutral network
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2.3 RF Electric-field Sensing

O Indust Radio-frequency antenna, receiver, and analyzers have limitations in sensitivity, bandwidth,
R neusty accuracy, spatial resolution, and need calibration in a standard RF E-field, the industrial needs
of modern communication and information transmission cannot be met.
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2.3 RF Electric-field Sensing Research at NIM
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2.3 RF Electric-field Sensing Research at NIM

Quantum Microwave E-filed Meter
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2.4 Temperature Sensing

vav Industry
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-

(g -2~ 3oy

204l J3)aIOWIA||

extreme environment

Eunseicpuzs  yjeais s ‘

W 059- 084 ~

CIRUII} M

yioddns 2315 ua o> wnurel

W~

high spatial resolution

-

(very high temperature reactor)

ST
4
3 ~ \
h \
EY
532nm ! 1 1
‘ 637nm | |
/,, 1
M=
p m$ _1 /
/
3 ) :' ~2.87éHz
\\

NV (nitroge-vacancy)

Fluorescence (norm.)

Traditional temperature sensors are easily affected by environmental interference, such as
external magnetic fields, irradiation, thermal cycles or vibration, and are difficult for high-
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2.4 Micro-nano Thermometry Using NV Centers at NIM

B Various sizes: 20 nm- mm; wide temperature range: 100 K~700 K; biological friendly, stable, economical

B NV-center based temperature sensing capability relies on the ODMR measurement, which
introduces systematic errors
B Optical Detected Magnetic Resonance (ODMR) systems were set up for metrological research
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2.4 Micro-nano Thermometry Using NV Centers at NIM

=2

Temperature (K)

Initial 10s 30s 60s
SFuR
32 CQ 50
z 43.68
40
w0 e :
r '& 23
202 / \ 16.16K é
% [12.50¢ &
! 5. 20 16.16
y 12.50
2 o i? 10 [
- ]
| = 137 o718
292 o
0 50 100 150 200 30 20 13
Time (s) Microwave power (dBm)
=s=QOpen environment{NV1) Thermal insulation closed environment(NV2) =Tl NVE  «TI NVZ
1.00
0.99
% 0.98 [
=
£
Eo.97|
-1
g
E .
] 0.96 | i 7
H % Fi
Z0.95] 1 * -5dBm ]
A f' e -13dBm
0.94] 18 dBm|
. . . | v -22dBm
2.85 2.86 2.87 2.88 2.89

Frequency (GHz)

-70 L e o o olae o' o L
SISE oL
80
% -85}
E -90
< -95 = Toyli, 2012 N
= - - = Plakhotnik, 2014 v,
% -100 |- - = Choe, 2018
10skF - - S,, Acosta, 2010 N
S;, Acosta, 2010 N \\
-IOE- .. g Acosta, 2010 NN
-115F = = S; Acosta, 2010 \\
120 [—— This work , . ,
280 300 320 340 380
T (K)

B various results showed that systematic
uncertainty research is needed for its
promising future as a standard micro-nano
meter scale thermometry

B Metrology can accelerate the practical
application of NV center thermometer
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4.1 Embedded Systems/Miniaturization

Reduce size and power consumption, real-time monitoring and feedback.
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4.2 Integration of Al Techniques

Al-driven quantum sensing systems can enhance signal-to-noise ratios,
suppress background noise, and extract valuable information from noisy
or incomplete data, enabling more reliable and accurate measurements in
challenging environments.
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4.3 Future Applications in Industry

The application scope and fields of quantum sensors are rapidly expanding, covering multiple key
areas such as communications, healthcare, scientific research and resource exploration.

Scientific Research Healthcare Resource Exploration

It has over 30 years of

Currently advancing scientific Currently, CPT atomic clocks Currently focused on
research into the microscopic are replacing traditional crystal biomagnetic measurement. application history in
world. oscillators. resource exploration and

other areas.

Future quantum sensors will reveal In the future, molecular clocks and Future quantum magnetometers will In the future, it is expected that

viral mechanisms and explore dark chip-scale optical clocks are expected | | enable high-resolution imaging in quantum gravimeters will generate

matter. to further enhance 5G and 6G brain science and brain-machine high-resolution exploration maps of
communication performance. interfaces. deep minerals.
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Summary

B Benefitting from the inherent advantages of quantum systems, quantum sensing has
significant advantages over classical sensors in terms of sensitivity, stability, and traceability.

B NIM keeps pace with this cutting-edge research technology and has conducted a series of
studies in fields of quantum sensing of magnetic fields, electric fields, temperature, and

gravity.

B Future development of quantum sensors including miniaturization, multidimensional
information perception (Integration of Al and cloud calculation), etc.

B Quantum sensing has tremendous potential for development and broad industrial application
prospects.
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