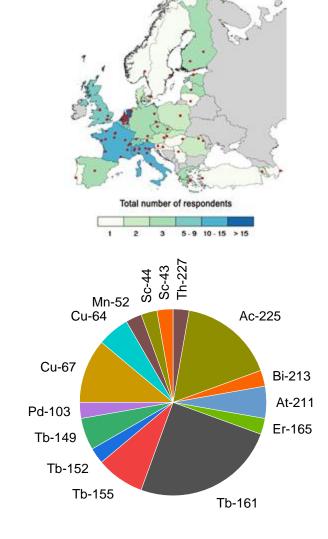

PRISMAP THE EUROPEAN MEDICAL RADIONUCLIDES PROGRAMME: AN EMPHASIS ON ALPHA EMITTERS IN THERANOSTICS APPROACHES

Workshop on Standards and Measurements for Alpha Emitting Nuclides in Therapeutic Nuclear Medicine

BIPM

Thierry Stora, CERN
22 Feb 2024

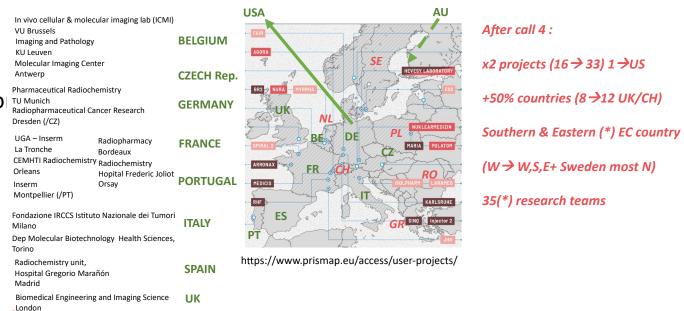
PRISMAP is organised as an INFRA project funded by the European Commission


PRISMAP.EU

Our web interface : https://www.prismap.eu/radionuclides/portfolio/

Interesting alpha emitters, and also some imaging companions*

Disclaimer: I may not only speak of alpha emitting nuclides?!


PRISMAP in a nutshell

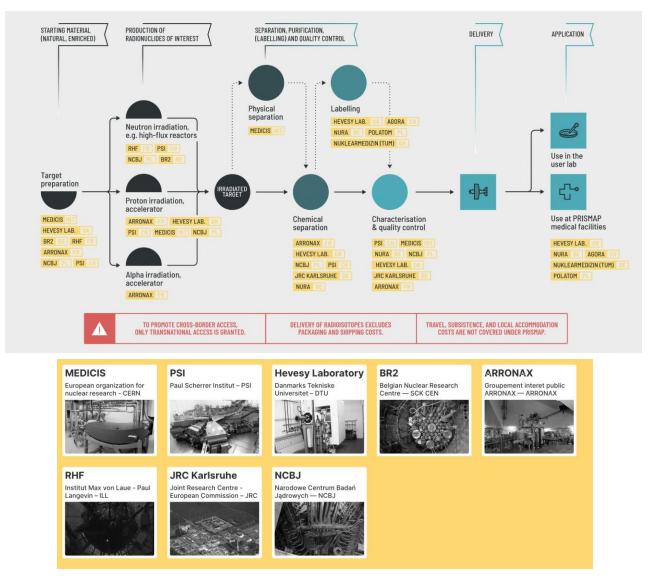
- Provide access to new radionuclides and new purity grades for the medical research
- Create a common entry port and web interface to the starting research community
- Enhance clarity and regulatory procedures to foster research with radiopharmaceuticals
- Improve the delivered radionuclide data and regulatio Tu Munich Radiophara along with biomedical research capacity
- Ensure long-term sustainability of PRISMAP

- →16 non-conventional radionuclides (amongst the 28)
- → 31 research groups from 12 countries
- → 32 projects covering the different aspects of translational medical research.

User projects and services

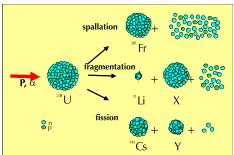
T. Stora, CERN – CM6– Nov 2023

Our initial proposal for day-1 radionuclides


Table 1. PRISMAP day-1 radionuclides.

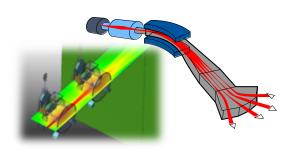
dionuclide	Application	Imaging(I)/ Treatment(T)/ Generator(G)	Production reaction	
c-44/Sc-44m	PET	I	⁴⁴ Ca(p,n); ⁴⁴ Ca(d,2n)	
Sc-47	$eta^{ ext{-}}$ therapy, <code>SPECT</code>	I/T	46 Ca(n, γ) 47 Ca(β -)	
Cu-64	PET	I	⁶⁴ Ni(p,n); ⁶⁴ Ni(d,2n)	
Cu-67	$eta^{\scriptscriptstyle ext{-}}$ therapy, <code>SPECT</code>	I/T	68 Zn(p,2p); 70 Zn(p, α)	
Ag-111	β^{-} therapy, SPECT, TDPAC	I/T	$^{110}\text{Pd}(n,\gamma)^{111}\text{Pd}((\beta^{-});^{110}\text{Pd}(d,n)$	
La-135	Auger therapy	Т	^{nat} Ba(p,X)	
Tb-149	lpha therapy, PET	I/T	^{nat} Ta(p,spall)	◆ PSI colleagues @ ISOLDE
Tb-152	PET	1	^{nat} Ta(p,spall)	CERN-MEDICIS
Tb-155	Auger therapy, SPECT	1	^{nat} Ta(p,spall)	◆——
Tb-161	$eta^{ ext{-}}$ therapy, <code>SPECT</code>	I/T	160 Gd(n, γ)	
Dy-166	Generator for Ho-166 (eta^{-} therapy, SPECT)	G	¹⁶⁴ Dy(n, γ)(n, γ)	
Er-165	Auger emitter	Т	¹⁶⁵ Ho (p,n)	
Tm-165	Generator for Er-165 (Auger therapy)	G	^{nat} Ta(p,spall)	And at call 4:
Er-169	$eta^{ ext{-}}$ therapy	Т	¹⁶⁸ Er(n, γ)	Number of tradianualidas/partfalia/22/15
Yb-175	$eta^{\scriptscriptstyle ext{-}}$ therapy, (SPECT)	Т	¹⁷⁴ Yb(n, γ)	→ www.prismap.eu/radionuclides/portfolio/224R
Pt-195m	Auger therapy, SPECT	I/T	¹⁹⁴ Pt(n, γ)	→ www.prismap.eu/radionuclides/portfolio/203F
Bi-213	lpha therapy	Т	²²⁵ Ac generator	✓ JRC Karlsruhe
At-211	lpha therapy	Т	²⁰⁹ Bi(α,2n)	Arronax
Ac-225	lpha therapy	Т	²²⁹ Th generator; ²³² Th(p,spall)	→

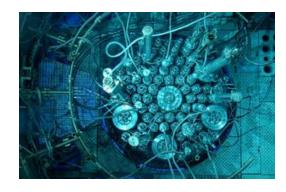
What is in the back of PRISMAP

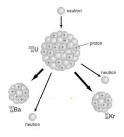


Charactesitics of the irradiation facilities in PRISMAP

Accelerator

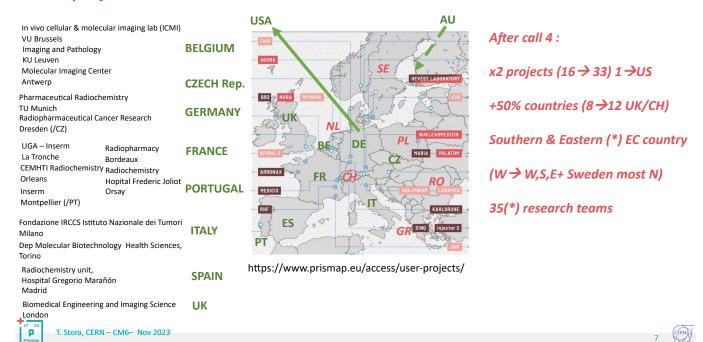



Isotope mass separation

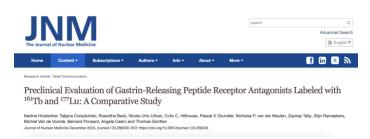


Research reactor

$$\frac{dN'}{dt} = nv\sigma_{act} N_T$$



Biomedical research projects supplied within PRISMAP


After 4 calls for project and 3 years, we are supporting 23 users projects from across Europe

User projects and services

- Improved FAP-radiotheranostics for personalised cancer treatment (211At)
- Phantom measurements quantitative 225Ac- (micro)SPECT imaging (213Bi)
- Feasibility of increased 211At production by 210Po assessment
- Dual 152Tb/149Tb radiolabeling for diagnostic and theranostic applications
- 203/212Pb-mcp-D-PSMA for an improved tumor therapy: Preclinical evaluation, automatization and translation to clinical application

www.prismap.eu/access/user-projects

Need in the precise determination of some long decay chains

Our informnation PRISMAP web page on Ra-224

Nuclear properties

Ra-224 decays by α decay with a half-life of 3.6316(23) days. Its decay chain involving Rn-220 ($T_{1/2}$ = 55.6(1) s), Po-216 ($T_{1/2}$ = 145(2) ms), Pb-212 ($T_{1/2}$ = 10.622(7) h), Bi-212 ($T_{1/2}$ = 60.55(6) min), either Po-212 ($T_{1/2}$ = 0.29 μ s) or Tl-208 ($T_{1/2}$ = 3.053(4) min) leads to stable Pb-208. Including its decay chain, the cumulative α emission is 400% per Ra-224 decay with an average α energy of 6.75 MeV.

Ra-224 and daughters emit γ -rays and X-rays. Notable emissions are from Ra-224 at 241.0 keV (4.10(5)%), Pb-212 at 238.6 keV (43.6(5)%), Bi-212 at 727.3 keV (6.67(9)%) and TI-208 at 2614.5 keV (99.754(4)%) and 583.2 keV (85.0(3)%).

Ongoing at University of Oslo on Ac-225

The relative biologic effect (RBE) will be estimated by comparing the absorbed radiation dose (Gy) of ²²⁵Ac-PSMA-617 and of X-radiation that gave equal surviving fraction (2D model: clonogenic assay) or gave equal growth delay (3D model: multi-cellular spheroids).

Some is done within PRISMAP

Deliverable D11.1

Table 20. Summary of nuclear decay data needs for the PRISMAP day-1 radionuclides.

Radionu	Recommendations for future studies				
At-211	New half-life determinations with complete uncertainty evaluation are required.				
Bi-213	No recommendations.				
Ac-225	• Extensive gamma-ray emission intensity studies and γ - γ coincidence studies are recommended are required.				

Point of Contact Seán Collins
Institution National Physical Laboratory
E-mail Sean.collins@npl.co.uk
Phone +442089438508

DOI <u>10.5281/zenodo.8247128</u>

Example: Ac-225 case

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Proposal to the ISOLDE and Neutron Time-of-Flight Committee

Detailed decay spectroscopy of ²²⁵Ac and its daughters to support its use in medical applications

September 26, 2023

Spokesperson: Thomas Elias Cocolios, thomas.elias.cocolios@cern.ch

Co-spokesperson: Patrick Regan, p.regan@surrey.ac.uk

Co-spokesperson: Sean Collins, sean.collins@npl.co.uk

Co-spokesperson: Razvan Lica, razvan.lica@cern.ch

Contact person: Charlotte Duchemin, charlotte.duchemin@cern.ch

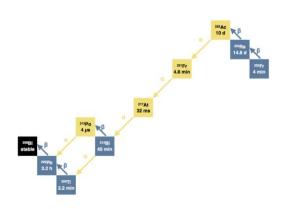
Project proposal to the MEDICIS Collaboration board

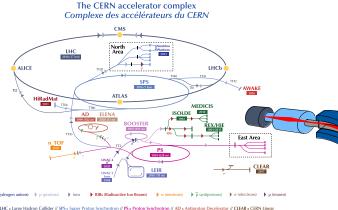
Determination of ²²⁷Ac impurity in ²²⁵Ac using alpha spectrometry

¹Ruslan Cusnir, ¹Claude Bailat, ¹Marietta Straub

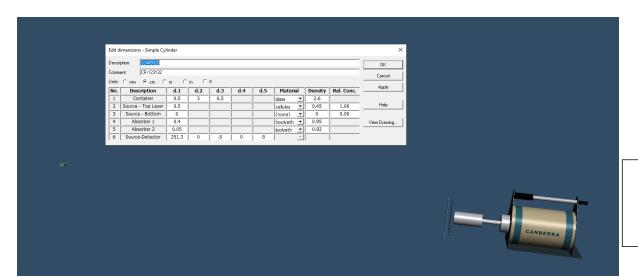
¹Institute of Radiation Physics, Lausanne University Hospital, Lausanne, Switzerland

Contact of the Principal Investigator: Ruslan Cusnir, PhD, ¹Institute of Radiation Physics, Lausanne University Hospital, Lausanne, Switzerland, Ruslan, Cusnir@chuv.ch

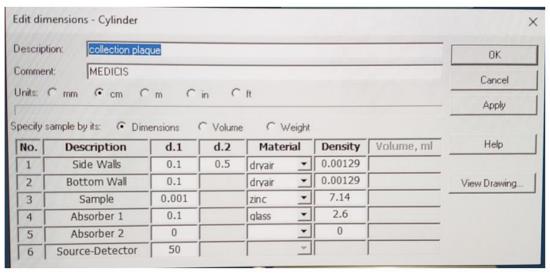


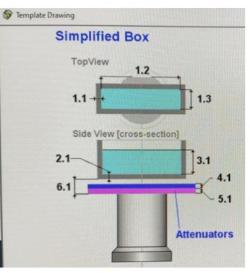

Project proposal to the MEDICIS Collaboration board

AlphaMET (Metrology for Emerging Targeted Alpha Therapies)


Ana Denis-Bacelar, National Physical Laboratory, United Kingdom

Also Ra-224 / Pb-212 request

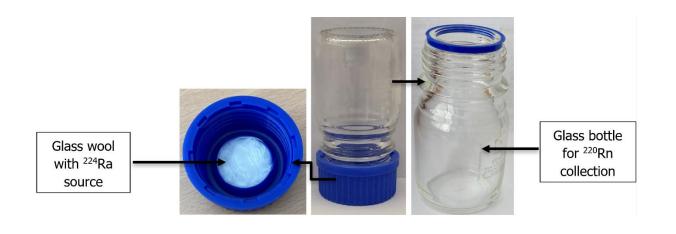




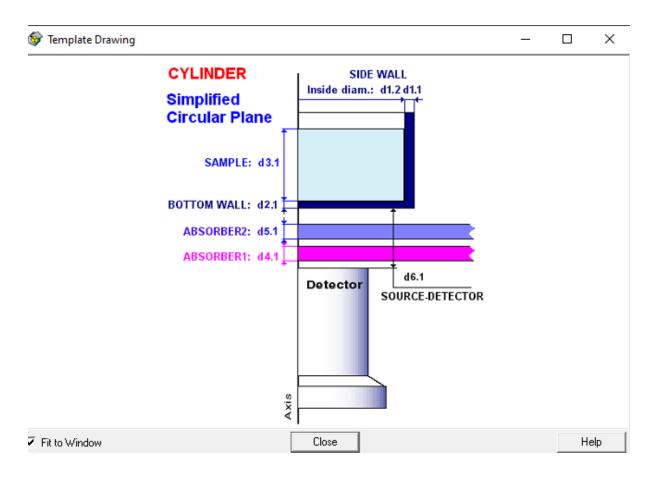
Example: assessment of Ra-225/Ac-225

MS-029	Ra-225	14.80 d		1.000	1.08E8 (94.00%)
	Ac-225	10.00 d	18/09/2023 15:23	0.959	4.04E7 (28.97%)
	Ra-224	3.66 d		0.992	8.86E5 (73.45%)
	Fr-221	4.90 m		0.997	3.99E7 (48.45%)
	Bi-213	45.59 m		0.997	3.60E7 (24.41%)
	Pb-212	10.64 h		0.866	4.35E5 (52.09%)

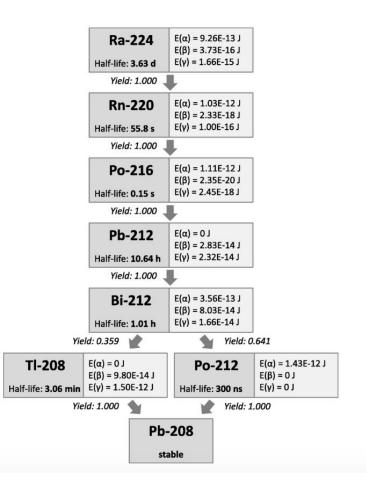
Databases used internally and for Shipment:
Nudat 3, JEFF, ENSDF


Measurement of a Ra-224/Pb-212 in a generator by emanation

- HP Ge coaxial hyperpur (>40%) from Mirion technologies (Canberra)
- Use of APEX-Gamma for spectrum acquisition
- Use of ISOCS/LABSOCS for geometry and efficiency modelisation



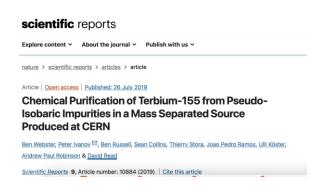
Measurement of a Ra-224/Pb-212 in a generator by emanation


Activity to be measured is deposited on the glass wool

- modelisation of the glass wool as the sample/source taking into account the thickness of the blue bouchon
- taking into account the thickness of the glass going into the blue bouchon
- distance between detector and source (d.6.1) also taken into consideration in the modelisation

Measurement of a Ra-224/Pb-212 in a generator by emanation

Collection foil	Radionuclide	Half-life	Ref.	Conf.	Weighted Mean Activity (Bg/unit)
	Ra-225	14.80 d	21/08/2023	0.993	2.21E6 (94.58%)
MS-031 dissolved	Ra-224	3.64 d		1.000	7.99E7 (60.68%)
	Rn-220	55.80 s		1.000	8.61E7 (77.94%)
and deposited on	Pb-212	10.64 h	13:05	0.993	3.53E7 (43.78%)
glass wool	Bi-212	1.01 h		0.998	3.18E7 (20.93%)
	TI-208	3.05 m		0.998	1.12E7 (21.06%)



Also ongoing in PRISMAP – the Terbium quadruplet

Tb-149

- Precision measurements of the half-lives of Tb-149 and its decay progenies (Eu-145 and Gd-149) are needed.
- New studies are required to improve the precision of the alpha decay branching ratio.
- There is a requirement for new studies of the gamma-ray emission intensities to confirm the accuracy of the single study and to improve the precision.
- There is also a requirement to improve the gamma-ray emission intensities of the decay progenies.

CERN-MEDICIS

Applied Radiation and Isotopes

Half-life determination of ¹⁵⁵Tb from

mass-separated samples produced at

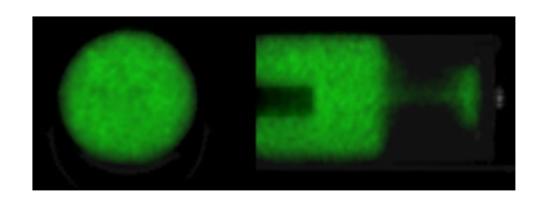
S.M. Collins ab A.P. Robinson acd, P. Ivanova, U. Köstere, T.E. Cocolios f

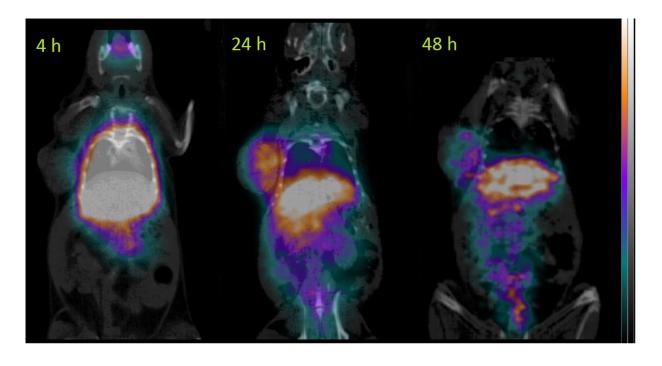
B. Russell a, B. Webster b, A.J. Fenwick a, C. Duchemin fg, J.P. Ramos fg h

E. Chevallay ⁹, U. Jakobsson ^{i j}, S. Stegemann ^f, P.H. Regan ^{a b}, T. Stora ^g

Applied Radiation and Isotopes Volume 202, December 2023, 111044

Determination of the Terbium-152 half-life from mass-separated samples from CERN-ISOLDE and assessment of the radionuclide purity


B. Russell a, A.J. Fenwick a, C. Bernerd fg, S. Stegemann f, K. Johnston g, A.M. Gerami , K. Chrysalidis ⁹, H. Mohamud ^a, N. Ramirez ^a, A. Bhaisare ^a, J. Mewburn-Crook ^a D.M. Cullen e, B. Pietras e, S. Pells e, K. Dockx f...P.H. Regan a b

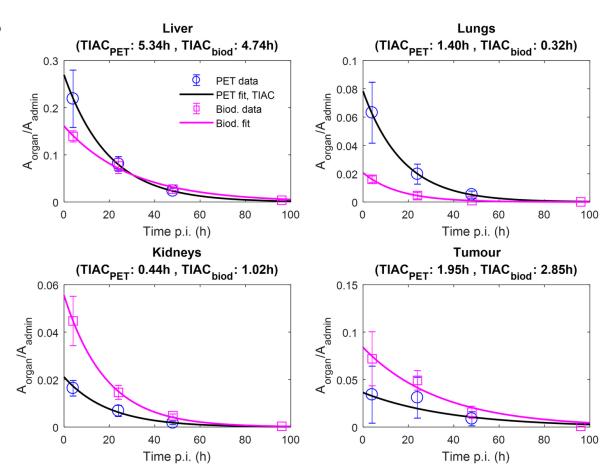


Cicone, F et al. "Internal radiation dosimetry of a 152 Tb-labeled antibody in tumor-bearing mice." EJNMMI research9.1 (2019): 1-10.

Going beyond imaging – exploitation of matched diagnostics pairs

Phantom, calibration and dosimetry

Cicone, F et al. "Internal radiation dosimetry of a 152 Tb-labeled antibody in tumor-bearing mice." EJNMMI research9.1 (2019): 1-10.



First PET imaging of ¹⁵²Tb-CHX-A''-DTPA-ScFv78Fc

Ewing Sarcoma cell line A673

Cicone, F et al. "Internal radiation dosimetry of a 152 Tb-labeled antibody in tumor-bearing mice." EJNMMI research9.1 (2019): 1-10.

What's next in PRISMAP

- (Likely) targeted calls : eg whole body PET
- Working on shaping PRISMAP+
- Structuring the PRISMAP community

WWW.PRISMAP.EU/RADIONUCLIDES/USER-FORUM/

@ MEDRADIONUCLIDE

PRISMAP PROJECT

