Denis E. Bergeron

Nuclear Medicine Project, Radiation Physics Division

denis.bergeron@nist.gov

Workshop on Standards and Measurements for Alpha emitting Nuclides in Therapeutic Nuclear Medicine, 23 Feb 2024

Disclosures

Portions of the work described here were supported by:

Bayer, AS Janssen Pharmaceuticals Oncoinvent, AS Orano Med

NIST does not endorse commercial products.

Decays per second (of a radionuclide)

In TAT, we need to measure the administered activity

- Key input for dosimetry and quantitative molecular imaging
- For imaging or therapy, we want to administer enough activity to do the job, but not more

The SI derived unit for activity is the becquerel

Boogle Decays per second (of a radionuclide)

Define "decays" for a nuclide

Decays per second (of a radionuclide)

Ac-225 decays mostly (52 %) to the ground state of Fr-221. The other 48 % is split between 47 excited states in Fr-221, with attendant gamma-ray emissions.

> From Decay Data Evaluation Project, accessed: http://www.lnhb.fr/nuclear-data/nuclear-data-table/

Decays per second (of a radionuclide)

The measurement... just counting the decays

Counting methods must be appropriate to the decay types, with efficiency models to correct for missed counts

Decays per second (of a radionuclide) The "a" here is really important

Account for radionuclidic impurities, including breakthrough of parents

Account for progeny

Primary standards for activity in TAT

Starting in about 2005, with work on ²²³Ra, a wave of interest in therapeutic radiopharmaceuticals based on alpha-emitters has kept metrology institutes busy

Review

Realization and dissemination of activity standards for medically important alpha-emitting radionuclides

Denis E. Bergeron^{a,*}, Karsten Kossert^b, Sean M. Collins^{c,d}, Andrew J. Fenwick^c

^a Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, 20899-8462, USA

^b Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116, Braunschweig, Germany

^c National Physical Laboratory, Hampton Road, Teddington, Middlesex, TW11 OLW, UK

Medically important alpha emitters

(Some) Medically important alpha emitters NST

Primary methods for TAT activity standards NIST

2.8

primary reference measurement procedure

primary reference procedure

reference measurement procedure used to obtain a measurement result without relation to a measurement standard for a quantity of the same kind

source activity. While to date there are no examples of DSA being used to measure the activity of a medically important alpha emitting radionuclide, Marouli et al. (2019) discuss measurements of 227 Ac in equilibrium with its progeny, including 227 Th and 223 Ra. The contamination risks posed by diffusion of radon progeny and high energy recoils that Marouli et al. address will be common to the decay chains of interest for medical applications. For activity measurements "contamination" means lost counts, as do the common measures taken to avoid contamination, e.g., covering dried sources with thin protective films. Fortunately, liquid scintillation-based methods offer a 4π detection scheme with very high counting efficiencies and, in various forms, account for all primary activity standardizations of medically important alpha-emitting radionuclides to date.

2.1. Liquid scintillation

Liquid scintillation (LS) counting is a very powerful method for the

Applied Radiation and Isotopes 184 (2022) 110161

Liquid-scintillation based primary methods NIST

Challenges in LS measurements for TAT

Decay chains

- Progeny include beta-emitters ($\varepsilon < 1$)
- Progeny include short-lived nuclides
- Pre-equilibrium measurements (changing $\varepsilon(t)$)
- Impurities
 - Breakthrough
 - Co-produced isotopes

TDCR is well-suited for TAT nuclides

Triple-to-double Coincidence Ratio (TDCR) counting

- Liquid scintillation counting
- 3-detector system where double and triple coincidence events are counted

 $TDCR = N_{\rm T}/N_{\rm D} = \varepsilon_{\rm T}/\varepsilon_{\rm D}$

- Vary efficiency
- As $\varepsilon_{\mathrm{T}}/\varepsilon_{\mathrm{D}} \rightarrow 1$, N_{D} (and $N_{\mathrm{T}}) \rightarrow N$
 - In practice, a bit more complicated, but we have good models!

LS counting efficiencies are high

Triple-to-double Coincidence Ratio (TDCR) counting

$$TDCR = N_{\rm T}/N_{\rm D} = \varepsilon_{\rm T}/\varepsilon_{\rm D}$$

The MICELLE2 model* uses a Monte Carlo approach to calculate ε_T and ε_D for β^- decay branches

*Kossert & Grau Carles, Appl. Radiat. Isotop. 68, 1482-1488 (2010).

²²⁴Ra decays by four α -emissions

Following Bateman (1908), concentrations of isotopes in a decay chain are calculable from initial concentrations and decay constants (λ)

$$\frac{dN_1}{dt} = -\lambda_1 N_1$$
$$\frac{dN_i}{dt} = \lambda_{i-1} N_{i-1} - \lambda_i N_i \quad (i = 2, n)$$

²²⁴Ra reaches equilibrium 6 d after t_{sep}

	T _{1/2}	A/A _{Ra-224}
²²⁴ Ra	3.631(2) d	1
²²⁰ Rn	55.8(3) s	1.000178(1)
²¹⁶ Po	0.148(4) s	1.000178(1)
²¹² Pb	10.64(1) h	1.13928(15)
²¹² Bi	60.54(6) min	1.15263(15)
²¹² Po	300(2) ns	0.7385(11)
²⁰⁸ TI	3.058(6) min	0.4144(20)

NIST

*Pre-equilibrium activity assays are tricky

More than summing the activities

Importance of survival corrections

Challenges in LS measurements for TAT

Decay chains

- ✓ Progeny include beta-emitters (ϵ < 1)
- Progeny include short-lived nuclides
- Pre-equilibrium measurements (changing $\varepsilon(t)$)
- Impurities
 - Breakthrough
 - Co-produced isotopes

Equilibration considerations

²²⁴Ra (longest-lived progeny is ²¹²Pb, $T_{1/2}$ = 10.6 h) takes > 6 d to reach equilibrium

Separated from its parent, ²¹²Pb (longest-lived progeny is ²¹²Bi, $T_{1/2}$ = 60.55 min) reaches equilibrium in ~ 12 h.

Breakthrough of the parent leads to "supported" ²¹²Pb

Measuring during ingrowth

Th-227 differs from previously considered decay chain nuclides because we cannot wait for equilibrium.

"If there's one thing I despise, it is a fair fight. But if I must, then I must..." --Dark Helmet

Preliminary LS efficiency calculations

Estimate 100 % LS counting efficiency for alpha emissions

Calculate efficiencies for beta emissions with MICELLE2

Time evolution of LS efficiencies

Time-dependent efficiency curves

So, for a given LS source, we predict the decrease in experimental TDCR and an increase in efficiency over time.

NIST

The single Figure-of-Merit model

If we assume the LS source is stable, then the observed tripleto-double coincidence ratio is expected to change as the betaemitting progeny grow in

- Our efficiency model tracks the ingrowth
- The slope of the curve is predicted by the counting efficiencies for the betaemitters, so the free parameter (figure-of-merit) can be adjusted to fit the experimental data to the model
- Modeled efficiencies are then used to calculate activity

Challenges in LS measurements for TAT

Decay chains

- ✓ Progeny include beta-emitters (ε < 1)
- Progeny include short-lived nuclides
- ✓ Pre-equilibrium measurements (changing $\varepsilon(t)$)
- Impurities
 - Breakthrough
 - Co-produced isotopes

The problem of breakthrough

'Negligible' breakthrough in the literature NST

Appl. Radiat. Isot. Vol. 39, No. 4, pp. 283–286, 1988 Int. J. Radiat. Appl. Instrum. Part A Printed in Great Britain 0883-2889/88 \$3.00 + 0.00 Pergamon Press pic DOI: 10.1002/jlcr.3610 Revised: 16 December 2017 Accepted: 17 January 2018

RESEARCH ARTICLE

WILEY Radiopharmaceutical

An Improved Generator for the Production of ²¹²Pb and ²¹²Bi from ²²⁴Ra

ROBERT W. ATCHER,^{1*} ARNOLD M. FRIEDMAN² and JOHN J. HINES²

⁴Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland and ²Chemistry Division, Argonne National Laboratory, Argonne, IL 60439, U.S.A.

(Received 7 October 1987)

We have developed an improved generator for the production of the alpha emitting radionuclide ²¹³Bi and its parent, ²¹³Pb. These radionuclides are well suited to use as rediotherment in accutacy to their relations: the activity remains on the anion exchange resin. Breakthrough of the thorium in the radium solution is negligible, less than 1 ppm. Generators which have been returned to ANL decay with the half life of ¹²⁴Ra.

The yield of the generator as a function of HI

Ra-224 labeling of calcium carbonate microparticles for internal α -therapy: Preparation, stability, and biodistribution in mice

Sara Westrøm^{1,2,3} \square | Marion Malenge¹ | Ida Sofie Jorstad¹ | Elisa Napoli^{1,3,4} | Øyvind S. Bruland^{1,3,5} | Tina B. Bønsdorff¹ | Roy H. Larsen¹

3.2 | Ra-224 generator performance

Breakthrough of the ²²⁸Th parent was determined with α spectroscopy to be less than or equal to 1.5×10^{-3} Bq/mL. This amount corresponds to less than 3×10^{-7} of the original ²²⁴Ra activity. No ingrowth of ²²⁴Ra from ²²⁸Th was detected when half-life measurements with liquid scintillation were performed. Altogether, the results from these 2 analyses suggest that the quality of the prepared ²²⁴Ra solution was satisfactory.

Nal(TI) won't see ²²⁸Th in spectrum

²²⁸Th decays mostly to the ground state of ²²⁴Ra

HPGe detection of ²²⁸Th faces challenges NIST

The resolution of HPGe allows identification of the weak γ-ray peaks from ²²⁸Th decay

Minimum detectable activities at early times are high, due to the Compton background from ²²⁴Ra and its progeny

Can half-life detect < 1 ppm ²²⁸Th?

Half-lives determined with pre-equilibration data require more complicated fitting

Half-lives determined with post-equilibration (> 6 d past t_{sep}) data are fairly robust against ²²⁸Th breakthrough

Plotting what v. when

(days from t_{sep})

Monitoring half-life can provide sensitivity to ppmlevel ²²⁸Th breakthrough...

....if you can distinguish a deviation of 2 σ from the evaluated half-life (i.e., you're the **best in the world** at measuring half-lives)

...and you measure until 50 days post-separation

Nobody's that good!

Data are being considered for a new half-life evaluation (DDEP*) There is spread in the dataset, and estimated uncertainties vary

*http://www.lnhb.fr/nuclear-data/nuclear-data-table/ Bergeron et al., ARI 170, 109572 (2021).

So, catching breakthrough is a challenge

Gamma-ray spectrometry and half-life cannot provide an early measure of ²²⁸Th breakthrough in ²²⁴Ra

NIST

This is a problem for any column-produced TAT nuclide (e.g., ²¹²Pb from ²²⁴Ra, ²²⁵Ac from ²²⁹Th)

Other impurities are tricky, too

https://www.fda.gov/media/152472/download From the 2021 FDA-NRC Workshop on Ac-225. Along with breakthrough for columnproduced materials, there is serious concern right now about co-produced isotopes that cannot be easily separated

The ²²⁷Ac impurity in accelerator-produced ²²⁵Ac has regulators concerned with licensing

It's not the dose to patients that's the concern; it's the occupational exposure to workers and the disposal questions. (Similar issues have come up with ^{177m}Lu impurities in ¹⁷⁷Lu radiopharmaceuticals.)

Recently standardized alpha-emitters (NIST) NIST

Recently standardized alpha-emitters (NIST) NIST

TDCR ²¹² Pb massic activity uncertainty budget. Uncertainty Component		u/%	
		E1	E2
Counting statistics (within and between insertions) Model uncertainty (efficiency variation); estimated as the Between sources; estimated as the standard deviation of Background	e typical standard deviation on measurements of a source with $(N = 3)$ different gray filters the activity concentration obtained with $(N = 3)$ LS sources	0.11 0.05 0.09 2E- 05	0.11 0.08 0.03 4E- 05
Pb-212 half-life; propagation of the standard uncertainty Nuclear decay data: estimated uncertainty due to the ha (dominated by the uncertainty on the ²¹² Bi decay branch coincidences in the ²¹² Bi+ ²¹² Po decay	on the half-life for ²¹² Pb (DDEP: 10.64(1) h) f-lives and branching ratios of ²¹² Pb and its progeny at equilibrium predicted by the Bateman Equation ning ratio); uncertainty due to beta shape and endpoint uncertainties; uncertainty due to missed	0.002 0.12	0.005 0.11
Efficiency Model (quenching model); propagation of an Mass determinations	estimated uncertainty on the Birks parameter ($kB = 0.0075(15)$ MeV/cm)	0.03 0.05	0.03 0.05
Control Standard uncertainty	Review Realization and dissemination of activity standards for medically important alpha-emitting radionuclides Denis E. Bergeron ^{9,*} , Karsten Kossert ^b , Sean M. Collins ^{9,d} , Andrew J. Fenwick ^e	0.20	
Ra-224 activity, half-life, and 241 keV gamma ray absolute emission intensity: A NIST-NPL bilateral comparison Denis E. Bergeron ^{a,*} , Sean M. Collins ^{b,c} , Leticia Pibida ^a , Jeffrey T. Cessna ^a , Ryan Fitzgerald ^a , Brian E. Zimmerman ^a , Peter Ivanov ^b , John D. Keightley ^b , Elisa Napoli ^{d,e,f} ^a Nadiason Physica Division, National Italiante of Standards ond Technology, Gatherburg, MD, 2009, USA ^a National Physical Liberary, Terology, MI, Markov, California, Cali	 ^a Physical Measurement Laboratory, National Institute of Standards and Technology, Galdborburg, MD, 20099-8462, USA ^b Physical Laboratory, National Institute of Standards and Technology, Galdborburg, MD, 20099-8462, USA ^b Physical Laboratory, National Institute of Standards and Technology, Galdborburg, MD, 20099-8462, USA ^b Physical Laboratory, National Institute of Standards and Technology, Galdborburg, MD, 20099-8462, USA ^b Physical Laboratory, National Institute of Standards and Technology, Galdborburg, MD, 20099-8462, USA ^b Physical Laboratory, National Institute of Standards and Technology, Galdborburg, MD, 20099-8462, USA ^b Department of Physical Laboratory, National Institute of Standards and Technology, Galdborburg, MD, 20099-8462, USA ^b Department of Physical Laboratory, National Institute of Standards and Technology, Galdborburg, ND, 20099-8462, USA ^b Department of Physical Laboratory, National Institute of Standards and Technology, Galdbord, GU2 7XH, UK A R T I C L E I N F O A B S T R A C T Interest in Targeted cancer therapy with alpha-emitting radionuclides is growing. To evaluate emergine therapy with alpha-emitting radionuclides is growing. To evaluate emergine therapy with alpha emitting radionuclides is growing. To evaluate emergine therapy with alpha emitting radionuclides is growing. To evaluate remergine therapy with alpha emitting radionuclides is growing. To evaluate emergine therapy with alpha emitting radionuclides is growing. To evaluate emergine therapy with alpha emitting radionuclides is growing. To evaluate emergine therapy with alpha emitting radionuclides is growing. To evaluate emergine therapy with alpha emitting radionuclides is growing. To evaluate emergine therapy with alpha emitting radionuclides is growing. To evaluate emergine therapy with alpha emitting radionuclides is growing. To evaluate emergine t	• ecay of ²²⁴ Ra	Ŧ

Recently standardized alpha-emitters (NIST) NIST

						Applied Radiation and Isotopes 68 (2010) 1523–1528 Contents lists available at ScienceDirect Applied Radiation and Isotopes journal homepage: www.elsevier.com/locate/apradiso
	²²³ Ra		0.21			• Preliminary
	²²⁴ Ra		0.31		_	- (unpublished) results
Sala ELSE	²¹² Pb		0.23	ed o	n Denis	• Uncertainties on ²²⁷ Th
Prim Elisa I Lizbet * Physical	²²⁷ Th	0.3	0.30 to 0.45			activity calibrations
^b Oncolnve ^c Institute (^d Departme A R T I <u>Keywords:</u> TDCR	225AC	0.27			• medically important	
	Ra-224 activity, half-life, and 241 keV gamma ray absolute er intensity: A NIST-NPL bilateral comparison Denis E. Bergeron ^{1,4,*} , Sean M. Collins ^{1,4,*} , Leticia Piblia ^{1,4} , Jeffrey T. Cessna ^{1,4} , R Brian E. Zimmerman ^{1,4} , Peter Ivanov ^{1,5} , John D. Keightley ^{1,5} , Elisa Napoli ^{1,4,*,f} ^{1,4} Natissin Hysic Division Nationation of Markoto and Tolonkog Gatherbary. 2008, USA ^{1,5} Portune of Product. Unlexity of Survey, Say Bill, Culdford, G12 721 UK ⁴ Operation of Radiation Biology. Institute of Caucor Research. Old Ultivity Biophil. Oda, Narway	Denis E. Bergeron ¹³ , ⁴ , Karsten Kossen ² Physical Mesaurement Laboratory, National Institute of Stand ² Physikalikoit-Technische Bundsanstatit (PTI), Bundscalker 10 ³ Manical Physical Laboratory, Hampton Road, Teddingson, M ⁴ Department of Physics, University of Surrey, Stag Hill, Calidgé A R T I C L E I N F O A R T I C L E I N F O A Gonda in a spectrometry spectrometry of the spectra of	rt ^b , Sean M. Collins ^{c,d} , And dards and Technology, Gatheraburg, MD, 20899 20, 33116, Braunschweig, Germany diddleser, TW1 10K, UK ford, GU2 7XH, UK A B S T R A C T neterest in targeted cancer therapy with a herapeutic agents requires precise activity pecific dosimetry. National metrology in pomarison of activity standards for small	lrew J. 9-8462, USA ulpha-emitt measuren nstitutes a fically iov	J. Fenwick ^c ₂₅₄	

Disseminating the becquerel

Decays per second (of a radionuclide) Using liquid-scintillation-based primary methods, NMIs have developed standards for a (growing) list of alpha emitters for TAT Dissemination of these standards proceeds by different paths

In most cases, producers and end-users measure activity via

• Radionuclide calibrator (reentrant well-type ionization chamber)

Gamma-ray spectrometry

Direct calibration

- Submit source to calibration lab
 - Certification of massic activity

- Local calibrations can be adjusted based on results
- Receive calibrated source
 - Certified for massic activity and total activity
 - Local calibrations can be performed with received source

https://www.nist.gov/calibrations

Contact: jeffrey.cessna@nist.gov

The calibration curve

The calibration curve approach can be used whether the standard activity (A_{std}) of the calibration source is known at the time of measurement or not

- The uncertainty on A_{std} is combined with the uncertainty on A_{read} (including fit, decay correction, etc.) to determine the uncertainty on any activity measured with the determined calibration setting
- "Dialing in" is also possible if A_{std} is known

Practical considerations for calibrations

- Geometry matters: the calibration geometry should match the measurement geometry
- Benchmark settings: may come from instrument manufacturer or literature – should be verified for specific instrument
- Traceable calibration means a "documented unbroken chain of calibrations"
 - Using a calibration setting from a NIST (or NPL...) publication does not make a measurement "NIST-traceable"

Pb-212 radionuclide calibrator settings

				-	0.1012		and the second state of a subsect of the
²⁰⁷ Bi	Bismuth	846 -	anoton'il an	1.7	38 Y	NBS73	Ref. for 1064, 569.7, 76.7,
208 TI	Thallium	571÷2		in ents:	3.07 M	NM75	TTZKEV
212Pb	Lead	101		Sat the Cal a	10.6 H	NM75	Decays to ²¹² Bi; eqb. after 1
²¹² Bi	Bismuth	489×10	- 10 522505 	spirially pure	60.5 M	NM75	III. See App. II.
²¹² Pb (Eqb	Lead ²¹² Bi)	158	dischiquina entipites	i cysh	ker about ker is left vas excep	An andraso Sala ana yasa Tabur yasan Maharatah	Eqb. after 8 hrs. Reading gives Act. of Pb in eqb.
²¹² Bi (Eqb.	Bismuth ²¹² Pb)	135	000g 503 288. 541	0 INTe	ne parent on tiplication	f do guivinos o Factora Co	Reading gives Act. of Bi in eqb. sample.
²¹² Pb Eq	Lead, b.	030 or 146×2	526. 451 468. 434	E Sei South	the Carty of	and a state of the second seco	Reading gives Total Act. of Pb & Bi in eqb. sample.
212Bi	Bismuth	05 200	488. 37		Alter and a start		
224Ra	Radium	646×100	\$18. 12 248. 10	Thou Brann	3.64 D	NM75	above can't's fired to shann's
22600	Radium	778		0.5	1622 Y	NBS73	Reading in grams. Com-

NIST

Pb-212 radionuclide calibrator settings

²⁰⁷ Bi Bismuth	846 -	1979-Al Ap	1.7 nuciiae	38 Y	NBS7 ION and	3 Ref. fo as m2 W	or 1064, 569.7, 76 Nën in equi	.7, IIDIII
²¹² Pb Lead	571÷2 101	ap flansis an Alred paiks	IC mod	lel			²¹² Pb	
²¹² Bi Bismuth	489×10	jo muos			DS	u _c /%	u _A /%	m
²¹² Pb Lead (Eqb. ²¹² Bi)	158	Patriginal av61p48r	CRC-55 CRC-25	ötR 5R	662 662	5.7 5.7	3.4 3.4	10
²¹² Bi Bismuth (Eqb. ²¹² Pb)	135	000(150)	e Die	tiplics to	Napoli et	al., ARI 16	6, 109362 (20) sample.	20).
²¹² Pb Lead, Eqb.	030 or 146×2	S28. 46. +68. 431 218. 37.	e ASet Bault		a (T.g.) a a nation a a shana (f)	Read Pb &	ing gives Total A Bi in eqb. sample	ct. of
²¹² Bi Bismuth	002 200	578	Broth			T ab gamer o		ailm at
224Ra Radium	646×100	RA8 35	Brass	3.64 D	NM/S		ling in grams. Co	m.
225Do Badium	778		0.5	1622 Y	NBS7	B Head	ing in grains. Co	Po

Pb-212 radionuclide calibrator settings

Seems Capintec settings neglect progeny beyond ²¹²Bi

The 2.6 MeV γ-ray from ²⁰⁸Tl accounts for much of the overall ionization chamber response to ²¹²Pb and its progeny

For decay chain nuclides especially, users should take care when referencing theoretically-determined radionuclide calibrator settings

Radium

Radium

224 Ra

646×100

778

			0.1012	NUTTO	The second s	
	DS	Ar	ead / A _{TDCR}	Note	Ref. for 1064, 569.7, 76.7, 1772 keV	
	101		4.20	DS given in r	nanual for ²¹² Pb in isolation	n.
	158		3.23	DS given in r with ²¹² Bi.	nanual for ²¹² Pb in equilibr	ium
14 . A.	30		6.83	DS given in r ²¹² Bi activity	nanual for sum of ²¹² Pb an	d
	146		3.40	DS given in r ²¹² Bi activity	nanual for sum of ²¹² Pb an (to be multiplied by 2)	d
	571		1.18	DS given in r by 2)	nanual for ²⁰⁸ Tl (to be divid	ded
·	662		1.04	DS reported	by Napoli et al. for ²¹² Pb Pb & Bi in eqb. sample.	
	<u>3</u>	e .2		6.8x er	rors. Tors. in grams. Com	

Table 8

Dial settings (*DS*) determined by the calibration curve method to give the correct ²¹²Pb activity for 5 mL of a 1 mol/L HCl solution of ²¹²Pb in equilibrium with its progeny in a NIST standard 5 mL flame sealed ampoule. Uncertainties on the dial settings, in dial setting units, are given in parentheses and are expanded (k = 2) uncertainties. The resulting relative expanded uncertainty on the measured activity (U_A) is given in the last row.

e		CRC-15R	CRC-35R	CRC-55tR	CRC-25PET	CRC-55tPET
C t	$DS_{ m TDCR}$ $U_{ m A}/\%$	690(4) 0.45	693(3) 0.41	688(4) 0.49	696(3) 0.38	685(3) 0.37
n	224Ra Radiur	m 646×1	oo Applied	Radiation an	d Isotopes 190	(2022) 110473
	226Da Badiur	n 778		0.5 <u>1622 Y</u>	NBS/3 BA	admu in grants. Com

Pre-equilibrium calibrations (e.g., ²²⁷Th) NIST

Standards dissemination via decay data

- Determination of absolute gamma-ray emission intensities (I_{γ}) supports calibrations via gamma-ray spectrometry
 - Opportunities to improve evaluated decay data

- Benchmarks to compare calibrations/standards
- Here again, traceable calibration means a "documented unbroken chain of calibrations"

Re-evaluated data impact calibrations

Table 2

Relative deviation of the absolute gamma-ray emission intensities determined by Pibida et al. (2015), Collins et al. (2015a), Kossert et al. (2015b), Marouli et al. (2019) and Simões et al. (2021) to the evaluated intensities by the DDEP for the main gamma rays of ²²³Ra and progeny. The reduced χ^2 for these new determinations is also shown.

Energy	Radionuclide	DDEP (Bé et al., 2011)	Pibida et al. (2015)	Collins et al. (2015a)	Kossert et al. (2015b)	Marouli et al. (2019)	Simões et al. (2021)	χ ² / (ν-1)
/keV		$/I_{\gamma}$	$(I_{\rm ref}/I_{\rm DDEP})/\%$					_
122.3	²²³ Ra	1.238(19)	5.0	6.0	5.3	12.3	-1.0	2.1
144.3	²²³ Ra	3.36(8)	4.5	3.6	3.2	10.4	-1.2	2.7
154.2	²²³ Ra	5.84(13)	4.1	3.1	3.3	10.1	-0.2	2.5
269.5	²²³ Ra	14.23(32)	-7.0	-6.0	-7.5	-0.9	-1.5	5.9
271.2	²¹⁹ Rn	11.07(22)	-3.4	-2.9	-1.8	2.1	-4.0	1.1
323.9	²²³ Ra	4.06(8)	-10.6	-10.0	-9.8	-5.2	-6.2	2.4
338.3	²²³ Ra	2.85(6)	-9.1	-8.6	-8.3	-3.2	0.0	6.6
351.0	211 Bi	13.00(19)	0.9	1.3	1.9	6.9	3.62	1.2
401.8	²¹⁹ Rn	6.75(22)	-2.8	-2.7	-1.9	3.4	-2.1	0.9
404.8	²¹¹ Pb	3.83(6)	4.7	4.7	5.7	9.7	10.2	0.9
427.2	²¹¹ Pb	1.81(4)	4.4	4.4	5.6	8.3	0.0	1.8
445.0	²²³ Ra	1.28(4)	-4.9	-4.8	-4.5	0.0	0.8	0.6
832.0	²¹¹ Pb	3.5(5)	-0.6	-1.5	-2.0	6.3	0.6	1.8

Applied Radiation and Isotopes 184 (2022) 110161

NIST

Summary and conclusions

SI NMIs (e.g., NIST) Secondary Laboratories **Production Sites / Radiopharmacies Clinical Sites**

Traceability and Primary Standards for Alpha Emitters used in TAT

- Primary standards from NMIs 'realizing the becquerel'
- Traceability can be achieved through direct calibration or through a chain
 - Each link in the chain introduces uncertainty

Thanks to

Radioactivity Group: Brittany Broder, Max Carlson, Jeff Cessna, Ron Collé, Morgan DiGiorgio, Ryan Fitzgerald, Gula Hamad, Lizbeth Laureano-Pérez, Leticia Pibida, Brian Zimmerman
Collaborators: Elisa Napoli, Gro Hjellum (Oncoinvent, AS); Seán Collins, Andy Fenwick, Peter Ivanov, John Keightley (NPL); Karsten Kossert (PTB); Sean Jollota, Larry DeWerd (U. Wisconsin)

Ask me about opportunities to join our team at NIST!

National Institute of Standards and Technology U.S. Department of Commerce

