

From a European Astatine-211 Network to a World Astatine-211 Community

Jean-François Gestin

E-mail: jfgestin@nantes.inserm.fr

« SEVERAL REASONS **not** to choose ²¹¹At»

THREATS

- No increasing industrial interest
- No better accessibility
- No better therapeutic effects
- Unknown toxicity to patients

WEAKNESSES

- Lack of accessibility
- There is very little production centres in EU
- Few research centres are using ²¹¹At
- Half-life is short for centralized production
- Lack of clinical POC
- Lack of Industrials involvement
- There is a need for a critical mass of users.

AN ALTERNATIVE APPROACH GRANTED BY EUROPE

THE ACTION STRUCTURE DISSEMINATION OUTCOMES/PUBLICATIONS NEWS EVENTS

NOAR - COST Action CA19114

Network for Optimized Astatine labeled Radiopharmaceuticals

A European Community & a new model

²¹¹At-nodes

TAT12 CAPE TOWN 01/03/2023

A European Community & a new model

²¹¹At-nodes: specialized treatment centres

Current European production sites and capacities

Current production sites:

- Copenhagen University (Denmark), internal beam, Scanditronix MC32
- /MC35 (1.2GBq-2GBq)
- Arronax Nantes (France), extracted beam IBA 70, (1GBq-1.5GBq)

Production sites starting soon:

- Birmingham University (UK), extracted beam, Scanditronix MC32 /MC35, (1GBq)- Ready on demand.
- Forschungszentrum Jülich, Germany, IBA 30 XP, extracted beam-Spring semester 2023
- Polatom Warsaw, Poland, IBA 30 XP, extracted beam- A year from now

Potential production sites:

- IFIN-HH, Magurele, Romania
- Budapest, Hungary (stage prospect)
- Nuclear Physics Institute of the CAS, Czech Republic

Alternatives: linac projects

- COLIBRI, (Hamburg, Germany) and GANIL, Caen France

Final forms for ²¹¹At delivery

Liquid delivery

²¹¹At in aqueous (wet extraction)

²¹¹At organic solvent (after distillation)

²¹¹At-precursor

²¹¹At-radiopharmaceutical

At high activities / activity concentrations

Potential Radiolysis!

Dry delivery

Irradiated target itself or scraped Dry residue (after distillation)

High activity delivery

Good starting material for any kind of chemistry

Radiochemistry & preclinical

²¹¹At chemistry is better known today and we can radiolabel:

- Small molecules
- Peptides
- Antibodies under different scaffolds

Several patented technologies

Lots of preclinical studies have been performed already with different vectors

Several clinical studies are ongoing in the USA, Japan & soon EU

Where are we now

- 1. 22 member countries in Europe + research groups in USA and Japan
- 2. Over **110** participants
- 3. Several International meetings have been organized
 - Coming soon: Global meeting, Coimbra, 09-11 May, 2023
- 4. Web site has been launched
 - https://astatine-net.eu/
- 5. 6 STSM (Short Term Scientific Missions) have been performed by PhD students
- 6. Expansion of the Network to academics and industrials is ongoing, registration is made through the web site.
- 7. Support of NMEU for the development of alpha emitters at the European Parliament

Industrial interest is increasing

« SEVERAL REASONS **to** CHOOSE ²¹¹At»

OPPORTUNITIES

- Increase of production capacities
- ²¹¹At-node for centralized production with close delivery
- IP development
- Better therapeutic index
- Scientific exchanges
- International collaboration
- COST NOAR & Expending community of users
- World Astatine Community

STRENGHTS

- Half-life 7,2h
- 1 alpha particle emitted
- **Cyclotron**, 209 Bi(α , 211 At
- Scalable production
- Independence from unstable countries
- Cheap raw material
- Mastered Patented Chemistry (USA, Sweden, Japan & France)
- Preclinical & clinical applications
- Waste management is easy
- Increasing production centres in EU
- Increasing research centres
- Increasing Industrials involvement
- Increasing mass of users

World Astatine Community: USA, JAPAN, EUROPE,

EUROPEAN NETWORK

....OPEN TO ANY NEW PARTNERS

Common expectations for the World Astatine Community

Goal:

• Enable the World Astatine Community to explore the full-potential of ²¹¹At for therapy.

Objectives:

- Advance the science
- Partner to enable a global increase in production capacity & availability
- Motivate clinical interest & provide further clinical evidences

Deliverables:

- Support the World Astatine Community by:
 - > making technological advancements globally available to researchers and industry.
 - > demonstrating a supply chain network with adequate amount of production to cover multiple clinical trials.
 - > encouraging collaborative international research.

World Astatine Community ambition

- For academia: to have access to a global knowledge exchange network that should favour innovation, capacity building and establishment of collaborations at international level.
- For industry: to have an identify access to innovation in preclinical and clinical research. This should facilitate rapid transfer of innovation from academia to industry.
- For general practitioners, clinicians and specialists: to get more information on innovative tools for the benefit of the patients.
- For patients: to be better informed on therapeutic advances.

THANK YOU

