

Measurement problems encountered in TAT clinical practice

Medical Physics

Department of Nuclear Medicine – LMU Hospital 22.02.2024 | Astrid Delker

Measurement problems encountered in TAT clinical practice Medical Physics

Measuring the patient-specific and daughter-specific pharmacokinetics

Patient-specific dosimetry

Pharmacokinetics Imaging

	[¹⁷⁷ Lu]Lu- PSMA-I&T	[²²⁵ Ac]Ac- PSMA-I&T	²²⁵ Ac vs. ¹⁷⁷ Lu signal SPECT
Therapeutic activity	7.4 GBq	8 MBq	$\approx 1/1000$
Photon yield	208 keV: 10 % (113 keV: 6 %)	218 keV: 11 % 440 keV: 26 %	≈ ¹ / ₁₀₀₀ * ≈ ¹ / ₅₀₀ *
			*compared to ¹⁷⁷ Lu 208 keV

LMU KLINIKUM

- Direct patient-specific imaging is doable but challenging in clinical routine
- Example for [²²⁵Ac]Ac-PSMA:
 - Photon yield comparable to e.g. ¹⁷⁷Lu but
 - Low therapeutic activities limit signal strength for Gamma camera imaging
 - 440 keV challenging for a conventional gamma camera system

Pharmacokinetics Imaging

• Comparison of SPECT projection data for NEMA phantom filled with clinically realistic activities

Pharmacokinetics Imaging

Comparison of SPECT projection data for combined ¹⁷⁷Lu/²²⁵Ac-PSMA-I&T treatment (1000 MBq vs. 8 MBq)

Current clinical qSPECT/CT protocol @ LMU for ²²⁵Ac

- Current clinical qSPECT/CT protocol @ LMU for [²²⁵Ac]Ac-PSMA-I&T and ²²⁵Ac-PRRT
 - High-energy collimator, 3/8" crystal (Siemens Intevo T16 and Symbia T2 SPECT/CT)
 - 32 projections for 360°
 - 128 x 128 pixels (~4.8 x 4.8 mm²)
 - 210 sec per projection $\rightarrow \sim 1$ hour total acquisition time
 - 440 keV +/- 10 % (+ lower scatter), 218 keV +/- 10 % (+ lower/upper scatter), 78 keV +/- 25 %

Current clinical restrictions

- Field-of-view is limited to one bed position only
- Comfortable patient positioning is cruical
- Imaging not available for all patients/all therapy cycles
- Late imaging challenging

Current clinical qSPECT/CT protocol @ LMU for ²²⁵Ac

- Quantitative reconstruction
 - In-house MAP-EM (plus additional post-filtering)
 - 2D presimulated (SIMIND) point-spread-function set for resolution modelling (steps of 0.4 cm up to 60 cm distance; 10¹⁰ primaries for 128x128 pixel)
 - Transmission-dependent scatter correction

2D detector point-spread function @ 440 keV

2D resolution modelling for ²²⁵Ac qSPECT

- High count measurement: 30-fold higher activity concentration than expected in clinical routine (200 Bq/ml 72 h p.i. OAR)
- \rightarrow total activity of approx. 2.8 MBq, ratio approx. 6:1

Pharmacokinetics Measuring scatter for ²²⁵Ac

Ann Nucl Med (2008) 22:549-556 DOI 10.1007/s12149-008-0170-z

ORIGINAL ARTICLE

Three-dimensional SPECT reconstruction with transmission-dependent scatter correction

Antti Sohlberg · Hiroshi Watabe · Hidehiro Iida

- Energy-window based scatter correction is likely to add additional noise (more severe for 218 keV)
- → Transmission-dependent scatter correction based on current image estimate (Sohlberg et al., Ann. Nucl. Med. 2008)

Patient example [225Ac]Ac-PSMA-I&T SPECT/CT @ 24 h p.i. (8 MBq)

218 keV TDSC

Bq/ml

Pre-therapeutic PET-CT

SUV

0

218 keV TEW

Bq/ml

500

Measurement problems encountered in TAT in clinical practive - Medical Physics | Astrid Delker

0

10

Liubchenko et al., EANM 2023

0

500

Patient example [225Ac]Ac-PSMA-I&T SPECT/CT (8 MBq)

Liubchenko et al., under review, EJNMMI

- Direct patient-specific imaging is doable but challenging in clinical routine)
- Surrogate imaging using theranostic pairs (e.g. [¹⁷⁷Lu]Lu-PSMA for [²²⁵Ac]Ac-PSMA (Kratochwil et al. 2017), [⁶⁴Cu]Cu-FAPI-04/[²²⁵Ac]Ac-FAPI-04 (Watabe et al. 2020)...)
 - \rightarrow knowledge about target expression and target vector pharmacokinetics
 - → limited knowledge about daughter-specific pharmacokinetics
- In-vivo sampling (e.g. blood, urine)

Or combinations of both – for more efficient and reliable protocols

Pharmacokinetics Daughters

- ²²³Ra, ²²⁵Ac,... → long decay chains with alpha-emitting, long-lived daughters
- Ignoring free daughters can change tumor-to-OAR dosimetry
- Cell internalization is an important parameter

Robertson et al., PMB, 62 (11), 2017

Free ²¹³Bi accumulates in kidneys!

Hawarihewa et al., upcoming German congress (Nuklearmedizin 2024)

Measurement problems encountered in TAT in clinical practive - Medical Physics | Astrid Delker

 Strong & significant correlation for both lesions and kidneys (r>0.9, p<0.01)

²¹³Bi

 $\mathrm{SUV}_{\mathrm{mean}}$

(st. dev.)

2.3 (0.7)

1.6 (0.9)

(r>0.9, p<0.01)Higher kidney uptake for 440 keV

 \rightarrow free ²¹³Bi?

Delker et al., EJNMMI 2023

7 patients w. SPECT imaging 24 h p. i. 208 keV (¹⁷⁷Lu) and 440 keV (²²⁵Ac)

Multi-isotope SPECT for combined ¹⁷⁷Lu/²²⁵Ac-PSMA therapy

• \rightarrow 14 kidneys and 24 lesions (bone and lymph node metastases)

Pharmacokinetics

177| 11

 $\mathrm{SUV}_{\mathrm{mean}}$

(st. dev.)

1.7(0.8)

1.5(1.1)

Pharmacokinetics Daughters

Continuous urine sampling (sample collection along with each SPECT acquisition)

Urine & kidney pharmacokinetics [225Ac]Ac-PSMA-I&T (5 patients]				
	% increase from 24 to 48 h p.i.	24 h	48 h	
²¹³ Bi-to- ²²⁵ Ac ratio urine	10±9	0.98±0.15	1.08±0.09	
²¹³ Bi-to- ²²¹ Fr renal ratio SUV _{mean}	9±8	1.08 ± 0.10	1.18 ± 0.10	

Liubchenko et al., under review, EJNMMI

• Patient-specific blood sampling is challenging for 24 h p.i. and later

Pharmacokinetics Daughters

Liubchenko et al., under review, EJNMMI

Five patients with [²²⁵Ac]Ac-PSMA-I&T (8 MBq) qSPECT @ 24 and 48 h p.i.

- Renal effective half-lives and SUV show significant correlation for ²¹³Bi and ²²¹Fr
- Significantly higher renal effective half-lives for ²¹³Bi

From imaging to patient-specific dosimetry...?

- For alpha emitters, dosimetry requires knowledge of the cellular and subcellular pharmacokinetics
- Problem: clinical imaging devices are limited to a resolution of mm to cm

Measurement problems encountered in TAT clinical practice Medical Physics

Conclusion

- Measurement of the patient-specific and daughter-specific pharmacokinetics is doable, but
 - Long acquisition times → limited field-of-view, no. of time points/patients currently restricted
 - Late imaging particularly difficult for TAT with low activities
 - Reconstruction algorithms need to be adapted for low-count regime and high-energy gammas
 - Surrogate imaging needs careful interpretation for complex decay chains with long-lived daughters
- Clinical imaging limited to a resolution of a few mm up to cm → How to connect macro- and microdosimetry?
- Which RBE (tissue-specific, endpoint-specific,...)?

Measurement problems encountered in TAT clinical practice

Medical Physics

Astrid Delker astrid.delker@med.uni-muenchen.de