

Targeted alpha therapy: when chemistry meets physics in the radiopharmacy

Janke Kleynhans

23 February 2024

Measurement in the Radiopharmacy

- The alpha-emitters considered
- Radioactive concentration/amount
- Radiochemical yield and purity
- Stability of radiopharmaceuticals
- Waste management
- Health physics and safety

sciencenotes.org

KU LEUVEN

⁵ Property & opinion of presenter – do not use information elsewhere.

KU LEUVEN

Clinical trials

6

Trials registered at clinicaltrials.gov as of October 2023 Excluding radium-223.

The alpha-radiopharmacy

- Superior radiation detectors and health monitoring of staff
- Superior ventilation protection isolators/closed systems
- Dedicated workspaces and QC equipment (presence of other emissions disrupt detection)
- Unique detections systems for QC
- Safer production equipment and closed systems
- Specialist staff

Measurement of low activities/indirect measurements

Misadministration

- dose different from prescribed dose by 20%
- e.g. 6 MBq Ac-225 (4.8 7.2 MBq)

Information courtesy of E de Blois, Erasmus MC. Figure courtesy of J. Kleynhans, created with Biorender.com

Cold standards for analytical method validation

Lack of useful gamma-emissions

LOQ & LOD

EANM Guidelines: Validation of LOQ should determine the amount of

radioactivity (kBq/volume) tested assure the quantification of small

amounts of radioactive impurities (0.5%).

Information courtesy of E de Blois, Erasmus MC. Figure courtesy of J. Kleynhans, created with Biorender.com

HPLC method recovery

Tested

- Total activity injected vs activity measured/activity eluted
- Injecting spiked known mixtures of radiochemical species identify compounds that is retained.

For alpha-emitters the LOD & LOQ or lack of useful gamma emissions results in complications.

Radiopharmaceutical stability

Radionuclide	Physical half-life
Thorium-227	18.7 days
Radium-223	11.4 days
Actinium-225	9.9 days
Lead-212	10.64 hours
Astatine-211	7.21 hours
Terbium-149	4.1 hours
Bismuth-213	46 minutes

¹⁴ Guérard et al., 2021. DOI: 10.1021/acs.accounts.1c00327

15 Laboratory for Radiopharmaceutical Research

Detection of radiolytic products

Only radioHPLC analysis is suitable for identification of radiolysis.

80.00

60.00

₹ 40.00

20.00

0.00

16

Hooijman et al. 2022. EJNMMI Radiopharmacy and Chemistry, 7:29 DOI: 10,1186/s41181-022-00181-0.

Laboratory for Radiopharmaceutical Research

30-

KU LEUVEN

- 0.5h

40

Shipment and shelf-life

82

Pb

Lead

207.2

85

At

Astatine

209.987

89

AC

Actinium

227.028

Waste management

18

Lutetium-177 example

19

EJNMMI Physics

Open Access

SHORT COMMUNICATION

Dealing with dry waste disposal issues associated with ^{177m}Lu impurities: a long-term challenge for nuclear medicine departments

Sylviane Prevot^{1*}, Inna Dygaï-Cochet¹, Jean-Marc Riedinger¹, Jean-Marc Vrigneaud^{1,2}, Myriam Quermonne¹, Matthieu Gallet¹ and Alexandre Cochet^{1,2}

Waste management problems:

- Long lived impurities from production methods
- Parent radionuclides from generator systems

Health physics and safety

a An Experimental Generator for Production of High-Purity ²¹²Pb for Use in Radiopharmaceuticals

Ruth Gong Li, Vilde Yuli Stenberg and Roy Hartvig Larsen Journal of Nuclear Medicine January 2023, 64 (1) 173-176; DOI: https://doi.org/10.2967/jnumed.122.264009

In experimental setup no radiation concerns – Upscaling to Hospital Radiopharmacy:

Potential safety concerns is radion-220 exposure when the generator is opened.

With a 7cm lead shield dose rate 0.7 μ Sv per MBq.

Personal experience with manual gallium-68 generator-based labelling 0.02 µSv per MBq.

Isolators!

Useful reads

Hooijman *et al. EJNMMI Radiopharmacy and Chemistry* (2024) 9:9 https://doi.org/10.1186/s41181-024-00239-1

REVIEW

EJNMMI Radiopharmacy and Chemistry

Open Access

Implementing Ac-225 labelled radiopharmaceuticals: practical considerations and (pre-)clinical perspectives

Eline L. Hooijman^{1,2}, Valery Radchenko^{3,4}, Sui Wai Ling¹, Mark Konijnenberg¹, Tessa Brabander¹, Stijn L. W. Koolen^{1,2,5} and Erik de Blois^{1*}

Useful reads

Kleynhans et al. *EJNMMI Radiopharmacy and Chemistry* (2022) 7:23 https://doi.org/10.1186/s41181-022-00175-y EJNMMI Radiopharmacy and Chemistry

LETTER TO THE EDITOR

Open Access

The determination of the radiochemical purity of Actinium-225 radiopharmaceuticals: a conundrum

Janke Kleynhans¹ and Adriano Duatti^{2*}

Useful reads

Journal of Nuclear Medicine, published on January 4, 2024 as doi:10.2967/jnumed.123.266774 E D I T O R I A L

Is ²¹²Pb Really Happening? The Post-¹⁷⁷Lu/²²⁵Ac Blockbuster?

Richard Zimmermann

Chrysalium Consulting, Lalaye, France; MEDraysintell, Lou Belgium

Journal of Nuclear Medicine, published on August 17, 2023 as doi:10.2967/jnumed.123.265907 E D I T O R I A L

Is Actinium Really Happening?

Richard Zimmermann

Chrysalium Consulting, Lalaye, France; MEDraysintell, Louvain-la-Neuve, Belgium; and Oncidium Foundation, Mont-Saint-Guibert, Belgium

THE STATE OF THE ART

Production and Supply of α -Particle–Emitting Radionuclides for Targeted α -Therapy

Valery Radchenko^{1,2}, Alfred Morgenstern³, Amir R. Jalilian⁴, Caterina F. Ramogida^{1,5}, Cathy Cutler⁶, Charlotte Duchemin^{7,8}, Cornelia Hoehr¹, Ferrid Haddad⁹, Frank Bruchertseifer³, Haavar Gausemel¹⁰, Hua Yang¹, Joao Alberto Osso⁴, Kohshin Washiyama¹¹, Kenneth Czerwinski¹², Kirsten Leufgen¹³, Marek Pruszyński^{14,15}, Olga Valzdorf¹⁶, Patrick Causey¹⁷, Paul Schaffer¹, Randy Perron¹⁸, Samsonov Maxim¹⁹, D. Scott Wilbur²⁰, Thierry Stora⁷, and Yawen Li²⁰

21st European Symposium on Radiopharmacy & Radiopharmaceuticals

April, 18 – 21 2024 in Coimbra, Portugal

Sunday, April 21, 2024

08:30 – 09:15 Back-to-basics III: Alpha emitters, from basic physics to labeling and measuring Janke Kleynhans, Leuven, BE

KU LEUVEN

Thanks to mentors who spend time to discuss science and shape my understanding:

Adriano Duatti, Erik de Blois, Amir Jalilian, Valery Radchenko, Mike Sathekge, Mariza Vorster, Otto Knoesen, Jan Rijn Zeevaart, Thomas Ebenhan, Eline Hooijman, Frank Bruchertseifer, Emilliano Cazzola, Richard Zimmerman

The Laboratory for Radiopharmaceutical Research at KU Leuven

and many many more...

Images created with licenced version of BioRender

Dr Janke Kleynhans is supported by the Fonds Wetenschappelijk Onderzoek - Vlaanderen through a senior postdoctoral grant [1226524N-7029].