

Dosimetry and patient treatment planning for TAT

Stig Palm

Associate Professor, Dept of Radiation Physics

Targeted Alpha Therapy group at the University of Gothenburg

Why dosimetry?

- "probably does not correlate with biological effect; and definitely not with clinical outcome"

- "it's too expensive"
- "field is immature"
- "no qualified staff"
- "low/no accuracy"
- "hinders developments of the field"

. Strâl säkerhets myndigheten

SSMFS 2018:5

Boring answer:

- It's the law!

(but not necessarily enforced)

IAEA Safety Standards

for protecting people and the environment

Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards

Jointly sponsored by EC, FAO, IAEA, ILO, OECD/NEA, PAHO, UNEP, WHO

General Safety Requirements Part 3 No. GSR Part 3

17.1.2014 EN Official Journal of	the European Union L 13/1		÷.
(Non-leg	II Elative acts)	Straisakerhetsmyndighetens författningssamling	Strâl säkerh myndig
DIRE	CTIVES		SSMFS 2
COUNCIL DIRECTIV of 5 Deci laying down basic safety standards for prote to ionising radiation, and repealing Directives 97/41/juratom an	YE 2013/59/LURATOM ember 2013 ction against the dangers arising from exposure 89/615/juntzom, 60/641/jurtzom, 66/29/juntzom, d 200/11/21/juntzom		
THE COUNCIL OF THE IUROPEAN UNION. Having regard to the Treaty establishing the European Atomic Energy Community, and in particular Articles 31 and 32 thereof.	(1) Directive 96/29/Euratam establishes the basic safety stan- dards. The provisions of that Directive apply to normal and emergency situations and have been supplemented by more specific legislation.		
Having regard to the proposal from the European Commission, drawn up after having obtained the opinion of a group of person appointed by the Scientific and Technical Cosmittee from among scientific experts in the Member States, and after having consulted the European Economic and Social Committee,	(4) Council Directive 97/43/Euratom (⁵), Council Directive 39/618/Euratom (⁵), Council Directive 90/641/Eura- tom (⁵) and Council Directive 2003/12/Euratom (⁹) cover different specific aspects complementary to Directive 96/29/Euratom.		
Having regard to the opinion of the European Parliament. History regard to the opinion of the European Economic and Social Committee. Whereas: (1) Paint b) of Article 2 of the European Tenzy provides for the backh or overs and of the paral palok. Article 3 of the European Tenzy Inform States analogies for the public sequence the August and the August and the States public sequence the August and the August and the States and the August and the August and the States analogies for the public sequence the August and the States analogies for the public sequence the August and the States analogies of the August and the August and August and the August	(1) An enogenical by the Cours of Jonnes of the Itrapesia Union in its zardews, the task is imposed on the Community by point (b) of Article 2 of the Enotene The Itrapesia and the Itrapesia and the Itrapesia and the the leadsh dworken and the granul public does not preclude, under explicitly much in the manders, a subscription of the Itrapesia and the Itrapesia and the measures of partnerson. At the Decentre provide for minimum rules, Member Stars should be fore a adopt or measures of partnerson. At the Decentre provide for minimum rules, the Itrapesia and the Itrapesia and the fore for measures of papels and arrives in the internal match at defined by the case-law of the Court of Justice.		
ations. (2) In order to perform its task: the Community laid down basic standards for the first time in 1959 by means of Directives of 2 Jehnary 1959 loying down the basic standards for the protection of the bash of workers and the general public against the dangeer arting from ionizing radiation (). The Directives have been revised	(6) The Group of Experts appointed by the Scientific and Technical Committee has advised that the batic rafety (7) Coursel Directive 97(4)[transmit of 10 June 1997 on brach protection of individual against the dangers of saming radiation in relation to medical exposure, and repeating Directive (9) Gaussi Directive 1994)[All Juncion of 2) November 1989 on informing the promit paths about baship protection numerus in the saming the ground paths about baship protection numerus in the saming the ground paths about paths of the numerus in the saming the ground paths about baship protection numerus in the saming saming the saming the saming the saming the saming the saming the saming the saming the saming the saming the saming the saming saming the sam	Strålsäkerhetsmyndighetens föreskr allmänna råd om medicinska expon	ifter och eringar
several times, mixt recently by Council Directive 94(2)(Euron $\widehat{\mathbb{P}}$ which repealed the aziler Directive $\widehat{\mathbb{P}}(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)($	be applied and inega to be taken in the event of a radiodical energiese (0) (15, 7), 121498, p. 100 Eventsher 1990 on the 19 Cound Dentities this of elements of the respect to the rolls of ionizing relations during their extrins in controlled areas (0) 1.542, 131,21490, p. 21). (9) Cound Dentities 2001/22thermises of 22 Dentiher 2001 in the counter 2001/22thermises of 22 Dentiher 2001 in the counter (0) 1.544, 131,22001, p. 53).	Konsoliderad version med ändringar införda t.o.m. SS!	MFS 2023:3.

Legal words:

Article 18 Education, information and training in the field of medical exposure

1. Member States shall ensure that practitioners and the individuals involved in the practical aspects of medical radiological procedures have adequate education, information and theoretical and practical training for the purpose of medical radiological practices, as well as relevant competence in radiation protection.

For this purpose Member States shall ensure that appropriate curricula are established and shall recognise the corresponding diplomas, certificates or formal qualifications. Physician specialized in radiation oncology

Medical Physicist specialized in nuclear medicine

Legal words:

 Member States shall ensure that all doses due to medical exposure for radiodiagnostic, interventional radiology, planning, guiding and verification purposes are kept as low as reasonably achievable consistent with obtaining the required medical information, taking into account economic and societal factors.

For all medical exposure of patients for radiotherapeutic purposes, exposures of target volumes shall be individually planned and their delivery appropriately verified taking into account that doses to non-target volumes and tissues shall be as low as reasonably achievable and consistent with the intended radiotherapeutic purpose of the exposure.

Each radionuclide treatment must be preceded by an individual adaptation of the radiation dose to the target volume, taking into account other exposed tissues.

Legal words:

Article 68 Tasks for the undertaking

Member States shall require the undertaking to carry out the following tasks:

(a) achieve and maintain an optimal level of protection of members of the public;

(b) accept into service adequate equipment and procedures for measuring and assessing exposure of members of the public and radioactive contamination of the environment;

(c) check the effectiveness and maintenance of equipment as referred to in point (b) and ensure the regular calibration of measuring instruments;

Article 56

Optimisation

4. Member States shall ensure that the optimisation includes the selection of equipment, the consistent production of adequate diagnostic information or therapeutic outcomes, the practical aspects of medical radiological procedures, quality assurance, and the assessment and evaluation of patient doses or the verification of administered activities, taking into account economic and societal factors.

Instruments and other equipment used for measurements that determines radiation dose to an individual patient must be calibrated with metrological traceability.

Calibrations, function checks and uncertainty analyzes must be carried out to the extent and with the periodicity needed to maintain metrological traceability.

More interesting answer:

- It will benefit the patients!

(just ask your local radiation oncologist....)

Importance of range beta-emitters vs alpha-emitters

Alpha-particles

Energy

- 4 8 MeV
- LET ~0.1 MeV/ μm
- Range ~70 μm
- z to cell nucleus per passage:
 - cf electron:
- RBE: 3-10

~0.2 Gy ~0.4 mGy

UNIVERSITY OF GOTHENBURG

Some α -emitters

No dosimetry for ²²⁵Ac-PSMA-617

Actinium-225-PSMA radioligand therapy of metastatic castration-resistant prostate cancer (WARMTH Act): a multicentre, retrospective study

Mike M Sathekge, Ismaheel O Lawal, Chandrasekhar Bal, Frank Bruchertseffer, Sajana Ballal, Giuseppe Cardaci, Cindy Davis, Mathias Eiber, Türkay Hekimsoy, Otto Knoesen, Clemens Kratochwil, Nat P Lenza, Johnay Mahapane, Letjie C Maserumule, Amanda H Malaphane, Kgomotso M G Mokoala, Honest Ndlowu, Vineet Pant, Hendrik Rathke, Janet Reed, Ishita B Sen, Aviral Singh, Ashwani Sood, Robert Tauber, Paul Thakral, Madhav Prasad Yadava, Alfred Margensten

Between Jan 1, 2016, and May 31, 2023, 488 men with mCRPC received 1174 cycles of ²²⁵Ac-PSMA RLT

Study of patients with histologically diagnosed adenocarcinoma of the prostate gland who were treated with ²²⁵Ac-PSMA RLT for mCRPC at seven centres in Australia, India, Germany, and South Africa.

Patients included received 8 MBq of ²²⁵Ac-PSMA RLT administered intravenously every 8 weeks until disease remission, disease progression, death, or patient withdrawal from treatment.

²²⁵Ac-PSMA RLT is not an approved treatment for mCRPC and was administered on a compassionate use basis in patients with advanced progressive mCRPC based on local and national laws of the respective contributing centres. UNIVERSITY OF GOTHENBURG

²¹¹At: 76.9-93.0

Targeted Alpha Therapy Group

²¹¹At $(t_{\frac{1}{2}} = 7.21 \text{ h})$

Particle	α ₁	α ₂ (from ²¹¹ Po)
E _α [MeV]	5.869	7.450
l [%]	41.8	58.2
LET [keV/µm]	106	122
R [µm]	48	70

The Periodic Table of the Elements

1																	2
H																	He
1.00794												-	6	-		0	4.003
3	4											2	6	7	8	9	10
Li	Be											Bree	Caba	N	O	F.	Ne
6.941	9.012182											10.811	12.0107	14.00674	15.9994	18.9984032	20.1797
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	P	S	CI	Ar
2.989770	24.3050											26.981538	28.0855	2hospherus 30.973761	32.066	35.4527	39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	- V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.0983	Calcium 40.078	Scintian 44,955910	Titanium 47,867	Vonadium 50.9415	Commission 51.9961	Manganese 54,938049	55.845	Crtwit 58.933200	Niekol 58.6934	Copper 63.546	7ine 65.39	69.723	Germanium 72.61	Arsonic 74.92160	Seloniam 78.96	Tromine 79.904	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
Rabidium 85.4678	Strontium 87.62	Ynium 88.90585	Zisconium 91.224	Nisbian 92.90638	Molybdenum 95.94	Technetium (98)	Ratheoium 101.07	Rhodium 102.90550	Philodium 106.42	Silver 107.8682	Cadmium 112.411	Indium 114.818	Tin 118,710	Antimony 121.760	Tellariun 127.60	Todine 126 00447	Xeson 131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Та	w	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
Colum 12 00545	Bariara 137.327	Laithanan 138 goss	Hafnion 178.49	Tantaham 19/0 0470	Tampics 193 RA	Rhimiani 186-2012	Osmiani 190 23	Indum 192.217	Platinum 105 D78	Cold 106.06655	Marcary 2003 50	Tullium 204.3¥33	Load 2017-2	Dienth 208 98018	Poloniam (205)	Astatine	Radon (222)
87	88	89	104	105	106	107	108	109	110	111	112	113	114	200.700.0	(2077		(/
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt									
Francian	Endium	Actinion	Retherfordium	Dahniam	Seaborgium	Bohriam	Hassiam	Meinerium	(2.00)	(222)	(277)						
(223)	(220)	(22))	(201)	(202)	(203)	(202)	(203)	(200)	(209)	(272)	(277)						
			1	58	59	60	61	62	63	64	65	66	67	68	69	70	71
				Ce	Pr	Nd	Pm	Sm	En	Gd	Th	Dv	Ho	Er	Tm	Yb	Lu
				Certurn	Praseodymium	Neodymium	Promethiam	Samarium	Europium	Cladelinium	Tobian	Dyspectium	Holmiam	Erbium	Tholiam	Vitobiam	Latetion
				90	91	92	93	94	95	96	97	98	99	107.20	103.93421	102	103
				Th	Pa	- îî	Nn	Pu	Am	Cm	RL	Cf	Fe	Em	Md	No	Lr
				Therium	Protectinium	Unition	Neptonium	Ptotonium	Americian	Cerium	Berkelium	Califernian	Einsteinium	Fernium	Mendelevium	Nabelium	Lowrencium
				232.0381	231.03588	238,0289	(237)	(244)	(243)	(247)	(24?)	(251)	(252)	(257)	(258)	(259)	(262)

- Laboratoire National Henri Becquerel (LNHB, France)
- Physikalisch-Technische Bundesanstalt (PTB, Germany)
- Idaho National Engineering & Environmental Laboratory (INEEL, USA)
- Lawrence Berkeley National Laboratory (LBNL, USA)

LNE-LNHB/CEA

• Khlopin Radium Institute (KRI, Russia)

DIRECTION DE LA RECHERCHE TECHNOLOGIQUE LABORATOIRE NATIONAL HENRI BECQUEREL

forcig in + energies alternations
Table de RADIONUCIÉIDES
Table of RADIONUCUDES
Table of RADIONOCLIDES

œ

UNIVERSITY OF GOTHENBURG

Tabelle der RADIONUKLIDE

INTRODUCTION

CEA Saolay, LIST, LNE-LNHB 91191 GIF-SUR-YVETTE CEDEX, FRANCE

Chapter 6

RULES FOR EVALUATION AND COMPILATIONS

Two main groups of data sources are used to obtain the recommended data:

- specific values evaluated from all available original publications,
- compiled data already evaluated by specialists (for example: Q-values), if a new experimental value exists, it may be taken into account. In this case, the corresponding reference is mentioned in the reference list of this radionuclide.
- 6.1 Rules for evaluation

All intermediate stages in the compilation and evaluation of a decay parameter are not presented in detail in order to avoid unnecessary complexity. The main stages comprise the following:

- critical analysis of published results and, if necessary, correction of these results to account for more recent values hitherto unavailable to the original experimentalists; as a rule, results without associated uncertainties are discarded, and the rejection of values is documented;
- data obtained through private communications are only used when there is no published article available;
- adjustments may be made to the reported uncertainties;
- only one result, generally the latest one, is taken into account per laboratory (or author); $\label{eq:eq:expansion}$
- recommended values are derived from an analysis of all available measurements (or theoretical considerations), along with the standard deviations corresponding to the 1 σ confidence level.

6.2 Gamma Emissions

	Energy keV	Photons per 100 disint.
$\begin{array}{l} \gamma_{3,2}({\rm Bi}) \\ \gamma_{3,1}({\rm Bi}) \\ \gamma_{1,0}({\rm Bi}) \\ \gamma_{1,0}({\rm Po}) \\ \gamma_{2,0}({\rm Bi}) \\ \gamma_{3,0}({\rm Bi}) \end{array}$	$\begin{array}{c} 149,72 \ (10) \\ 222,69 \ (10) \\ 669,77 \ (7) \\ 687,2 \ (7) \\ 742,74 \ (7) \\ 892,46 \ (7) \end{array}$	$ \begin{array}{c} \sim \ 0,00005 \\ \sim \ 0,00004 \\ 0,0038 \ (3) \\ 0,245 \ (12) \\ 0,00125 \ (19) \\ \sim \ 0,00014 \end{array} $

Targeted Alpha Therapy Group

Cross-calibrations

Energy (keV)	Photons per 100 disint.
76.864	12.66 ± 0.09
79.293	21.08 ± 0.12
89.256	
89.807	7.26 ± 0.12
90.363	
92.263	
92.618	2.26 ± 0.05
92.983	

TABLE 1 Completed clinical studies using ²¹¹At. (NTC number) is the ClinicalTrials.gov identifier.

Institution, Reference	Clinical situation	Nb. Pts.	Study Objective	TAT-agent	Target	Adminis- tration	Act- ivity	Toxicity/ effect
Duke University Medical Center, Durham, USA (9) (NCT00003461)	Recurrent surgically resected glioblastoma	18	Feasibility and safety	²¹¹ At-ch81C6	tenascin	Surgically created resection cavity	71-347 MBq	MTD, Not reached
Sahlgrenska University Hospital, Gothenburg, Sweden (8, 10–12) (NCT04461457)	Relapsed ovarian cancer	12	Safety, Toxicity Pharmacokinetics	²¹¹ At-MX35 F(ab')2	NaPi2b	Intra peritoneal	34-355 MBq	MTD, Not reached
Carl Gustav Carus University Hospital, Dresden, East Germany (7)	Recurrent carcinoma of the tongue	1	Palliation	²¹¹ At-labeled human serum albumin microspheres (15–25µm)	Tumor vasculature	Intra arterially (left lingual artery)	200 MBq	Tumor necrosis/ tongue necrosis
University of California Berkeley and San Francisco, USA (2)	Thyroid gland disorders	8	Tracer study	²¹¹ At	Na ⁺ /I ⁻ symporter (NIS)	Per oral in 25ml water	1.85 MBq	Thyroid uptake was established

rontiers | Frontiers in Medicine

heck for updates

irsen, ons AS, Norway ED BY

SPONDENCE.

i Wei, hai Jiao Tong University, China

in Washiyama, tima Medical University, Japan

ne Huclier, sité de Nantes, France

ACCESS

TYPE Review PUBLISHED 06 January 2023 DOI 10.3389/fmed.2022.1076210

Astatine-211 based radionuclide therapy: Current clinical trial landscape

Per Albertsson^{1,2}*, Tom Bäck³, Karin Bergmark^{1,2}, Andreas Hallqvist^{1,2}, Mia Johansson^{1,2}, Emma Aneheim^{1,3}, Sture Lindegren³, Chiara Timperanza³, Knut Smerud⁴ and Stig Palm³

TABLE 2 Ongoing and planned clinical trials with ²¹¹At. (NTC number) is the ClinicalTrials.gov identifier.

Institution, reference	Clinical situation	Planned size (nb Pts.)	Study objective(s)	TAT- agent/ Carrier	Target	Primary outcome
Fred Hutchinson Cancer Center, Seattle, USA (NCT04466475)	Multiple Myeloma	24	Feasibility and safety	²¹¹ At-OKT10- B10	CD38	MTD
Fred Hutchinson Cancer Center, Seattle, USA (NCT04579523)	Multiple Myeloma	30	Dose escalation	²¹¹ At-OKT10- B10	CD38	MTD
Fred Hutchinson Cancer Center, Seattle, USA (NCT04083183)	HCT for non-malignant disease	40	Dose escalation	²¹¹ At- BC8-B10	CD45	Graft rejection
Fred Hutchinson Cancer Center, Seattle, USA (<i>NCT03670966</i>)	High-risk acute leukemia or MDS	30	Dose-escalation	²¹¹ At- BC8-B10	CD45	Toxicity
Fred Hutchinson Cancer Center, Seattle, USA (NCT03128034)	High-risk AML, ALL, MDS or Mixed-phenotype acute leukemia	50	Dose-escalation	²¹¹ At- BC8-B10	CD45	Toxicity, MTD
Osaka University Hospital, Suita, Japan (<i>NCT05275946</i>)	Thyroid cancer	11	To establish recommended dose for Phase II trial	[²¹¹ At] NaAt	NIS	Treatment- related adverse events
Fukushima Medical University, Japan	Malignant pheochromocytoma	Up to 18	Dose escalation	²¹¹ At-MABG	Norepinephrine transporter	Toxicity, MTD

HCT, Hematopoietic cell transplantation.

Logistics of the therapy

Preparations

- Laparoscopy
- Peritoneal catheter insertion
- Peritoneal scintigraphy with ^{99m}Tc
- Pretreatment with KClO₄ or Kl (Patient 6-12)

Infusion

- 1-2 L Extraneal solution
- 33-170 MBq ²¹¹At-MX35F(ab')₂
- 0.2 MBq ¹²⁵I-albumin

•Sampling

- Blood (1-48h)
- I.p.fluid (1-24h)
- Urine (1-48h)
- Gamma camera (1-48 h)

Follow up

- Hematology
- TSH
- Creatinine
- HAMA

²¹¹At administered to patients

Pat. No.	Administered activity ²¹¹ At (MBq)	Infusate volume (L)	Initial ²¹¹ At- concentration (MBq L ⁻¹)	Specific activity (MBq mg ⁻¹)
1	34	1.5	22	61
2	48	2.0	24	105
3	40	2.0	20	81
4	42	2.0	21	212
5	92	2.0	46	69
6	103	2.2	47	83
7	119	1.2	101	-
8	83	1.1	73	64
9	65	1.2	53	50
10	297	1.7	180	293
11	333	1.6	203	624
12	355	1.7	215	743

Decipher the information

- Immunohistochemistry
 - From +/+++ to # ag/cell
- Amount of radioactivity
 - # atoms
- "Dose" of mAbs (mg)
 - # of mAbs
- Specific activity
 - How many mAbs carry a radionuclide
- Affinity constant (k_D)
 - On-rate and off-rate

UNIVERSITY OF GOTHENBURG

From macro- to microdosimetry

Monte Carlo simulations

> Med Phys. 2004 Feb;31(2):218-25. doi: 10.1118/1.1640951.

UNIVERSITY OF GOTHENBURG

Cellular dose conversion factors

Hamacher et al, J Nucl Med 42 (8) 1216-21

Goddu et al, MIRD Cellular S Values Reston, VA: Society of Nuclear Medicine; 1997.

Ø=0.3 mm

Ø=0.1 mm

40 -500 Gy

90 -300 Gy

Peritoneum

Microscopic tumors

Tumor core

- Outside (in the fluid)
- Binding only to surface cells
- Limited penetration
- Free diffusion (homogenous uptake)

High <u>mean</u> absorbed doses But <u>tumor core (</u>inside 70 µm) may not be irradiated

Alpha imaging: ²¹¹At-MX35-IgG on tumor spheroids

Tumor cell data

Elgqvist et al, J Nucl Med. 2006;47:1342-50

- Cell diameter = 18 μm
- Cell nucleus diameter = 14.4 μm
- Apparent equilibrium association constant, $K_a = 44\,000\,s^{-1}M^{-1}$
- B_{max} = 700 000 antigenic sites / cell

Tumor dose

 $\phi = 90 \text{ mm}$

$$D_{(r=0)} = 34 (+4) Gy$$

$$D_{(r=9.45)} = 40 (+4) Gy$$

$$D_{(r=18.9)} = 44 (+4) Gy$$

$$D_{(r=28.4)} = 52 (+5) Gy$$

$$D_{(r=37.8)} = 68 (+6) Gy$$

- 1.5 L Extraneal
- 1/800 ²¹¹At-labelled mAb

Elgqvist et al, J Nucl Med. 2006;47:1342-50

Gamma-camera imaging

Alpha imaging: Activity distribution in mouse kidneys Influence of molecular size of ²¹¹At-labeled vectors

Measuring samples

Biokinetic model

Enlargement: mAbs on microtumors on the peritoneum

Fluid volumes	[L]	Comments	Reference
Plasma	2.3	36 mL/kg body weight	(15)
Distribution volume in tissue	5.9	91 mL/kg body weight	(16)
Administered i.p. fluid	1.7		
Residual i.p. fluid	0.2		
I.p. fluid transport	[mL/min]		
Lymphatic drainage			
I.p. fluid \Rightarrow plasma	0.3	Mean delay 5 h (\pm 6h; SD)	Model fit
Water reabsorption			
I.p. fluid \Rightarrow plasma	0.7	When >200 mL peritoneal fluid	Model fit
Water inflow at equilibrium			
I.p. fluid ⇐ plasma	0.3	When 200 mL peritoneal fluid	Model fit
Water inflow osmotic effect		Proportional to i.p. icodextran	Model fit
I.p. fluid ⇐ plasma		concentration 0–24 h	
	3.1–1.5		
MAb conjugate transfer	[h-1]		
coefficients			
TER (plasma⇔intercellular	0.065		(17)
volume)			
Degradation/excretion			
(plasma⇒urine)	0.0096-0.03	Radiolabel dependent	Model fit
MAb binding parameters			
Association k_{on} [M ⁻¹ s ⁻¹]			(<u>6</u>)
Ip fluid ⇒tumor cell	44 000		
Dissociation k_{off} [s ⁻¹]			(<u>6</u>)
Tumor cell \Rightarrow ipfluid	0		
Number of sites/cell	700 000		(<u>6</u>)

Dosimetric calculations

Thyroid

- Gamma-camera
 Uptake 0-24h
- m = 20 g

Peritoneum

- I.p. concentration 0-24h
- Half equilibrium dose

Bone marrow

- Blood concentration 0-48h
- BM/Blood ratio = 0.32
- Urinary bladder wall
 - Urine data 0-48h
 - Half equilibrium dose
- Tumor (fictitious)
 - Biokinetic model + Monte Carlo
 - Tumor cluster, Ø = 0.1 mm

UNIVERSITY OF GOTHENBURG

Dosimetry for risk assessment

(A) Lower lungs (B) Kidneys

International Joarnal of Radiation Oncology biology • physics

CrossMark

Effective dose estimate

Physics Contribution

Absorbed Doses and Risk Estimates of ²¹¹At-MX35 F(ab')₂ in Intraperitoneal Therapy of Ovarian Cancer Patients

Elin Cederkrantz, PhD,* Håkan Andersson, MD, PhD,[†] Peter Bernhardt, PhD,* Tom Bäck, PhD,* Ragnar Hultborn, MD, PhD,[†] Lars Jacobsson, PhD,* Holger Jensen, PhD,[†] Sture Lindegren, PhD,* Michael Ljungberg, PhD,[†] Tobias Magnander, MSc,* Stig Palm, PhD,* and Per Albertsson, MD, PhD

Volume 93 • Number 3 • 2015

Absorbed doses of intraperitoneal TAT 575

A f Organ RBM Colon Lungs	bsorbed dose from photons (mGy) <0.005 0.01 0.01 0.02	Absorbed dose particles (r Clinical data 0.15 1.6	e from α nGy) Mice*	Equivalent dose (mSv) (RBE = 5) 0.75	Tissue- weighting factor		Contribution to effective dose (mSv)
f Organ RBM Colon Lungs	rom photons (mGy) <0.005 0.01 0.01 0.02	Clinical data 0.15 1.6	Mice*	$\frac{\text{dose (mSv)}}{(\text{RBE} = 5)}$ 0.75	weighting factor		to effective dose (mSv)
RBM Colon Lungs	<0.005 0.01 0.01 0.02	0.15	0.18	0.75	0.12		
Colon Lungs	0.01 0.01 0.02	1.6	0.18				0.35
Lungs	0.01 0.02	1.6		0.91	0.12		0.42
	0.02			8.0	0.12		3.7
Stomach			0.80	4.0	0.12		1.9
Breasts	< 0.005	0.14		0.70	0.12		0.32
Urinary bladder	0.01	1.9		9.5	0.04		1.5
Esophagus	$<\!0.005^{\dagger}$	0.91 [‡]		3.0	0.04		0.73
Liver	0.01	0.52		2.6	0.04		0.42
Thyroid	< 0.005	1.8		9.0	0.04		1.4
Bone surfaces	< 0.005	0.91 [‡]			0.01		0.18
Brain	< 0.005	0.91 [‡]			0.01		0.18
Salivary glands	$<\!0.005^{\dagger}$		1.4	7.0	0.01		0.30
Skin	< 0.005	0.91 [‡]			0.01		0.18
Remainder tissues							
Adrenals	0.01						
ET region							
Gallbladder							
Heart	0.01	1.2		6.0			
Kidneys	0.01	1.7		8.5			
Lymph nodes							
Muscle	< 0.01		0.11	0.55	> 0.12	~	1.6
Oral mucosa							
Pancreas	0.03						
Small intestine	0.01		0.25	1.3			
Spleen	< 0.01	1.3		6.5			

Abbreviations: RBM = red bone marrow; ET = Extrathoracic.

* Data from reference Bäck T et al (26).

[†] Assuming that the photon contribution for esophagus and salivary glands is equal to that of the thyroid.

[‡] Assuming that the α contribution to esophagus, bone surfaces, brain, and skin is equal to the mean result of evaluated "remainder tissues."

Erik Leidermark et al. J Nucl Med 2023;64:165-172

Copyright © Society of Nuclear Medicine and Molecular Imaging

Conclusions

- Imaging is possible
- Dosimetry is possible
- Model for minimal residual disease

...some final words

The use of α -emitters provides the perfect stimulus to the medical dosimetry community to fully embrace new advances in molecular biology and in vivo microimaging and to redefine and expand its role and function as it seeks improved methods for predicting biologic response...

(W. Bolch: α-Particle Emitters in Radioimmunotherapy: New and Welcome Challenges to Medical Internal Dosimetry, JNM 2001 42:1222-1224)