

Targeted Alpha Therapy: Challenges & Opportunities

Ben Fongenie MSc MPE, Medical Physicist Blue Earth Therapeutics

PP-UK-0693 / February 2024

Disclaimer

I am an employee at Blue Earth Therapeutics Ltd, a company developing therapeutic radiopharmaceuticals.

rhPSMA

²²⁵Ac Specifics & Modelling

Areas of Interest for BET

Concluding Remarks

Blue Earth Summary

- Blue Earth Diagnostics: Established in 2014 (*commercial stage diagnostics company*) acquired by Bracco in 2019
- Blue Earth Therapeutics: Established in 2021
- Mission statement: "Advancing next generation targeted radiopharmaceuticals to treat patients who have cancer"
- BET is developing two next generation radio-hybrid PSMA targeting RLTs for treatment of metastatic prostate cancer
- Phase I/II trials under way and planned.

What is "radio-hybrid" PSMA?

- Prostate-specific membrane antigen (PSMA)-targeted radioligand therapy (RLT) has been shown to extend progression-free and overall survival for men with metastatic castration-resistant prostate cancer (mCRPC).¹
- A novel radiohybrid (rh) PSMA radiopharmaceutical for RLT with low kidney uptake, rapid blood clearance, and high accumulation in tumors.²
- This radiohybrid (rh) molecule has a binding site for both a heavy metal and a diagnostic radionuclide such as ¹⁸F making it a true theranostic agent.
- ¹⁷⁷Lu-rhPSMA-10.1 has also demonstrated effective suppression of tumor growth *in vivo*,³ and promising efficacy in a patient with mCRPC.⁴

Example Tumour Time-activity Curve

[©] Blue Earth Therapeutics Ltd 2024. Confidential.

Relevance to Alpha Therapy

- Potential improvement in therapeutic index due to long tumour retention would be even more pronounced in alpha.
- A true theranostic agent allows for early PK to be established with diagnostic.

Modelling based on measured example tumour, replacing ¹⁷⁷Lu with ²²⁵Ac ignoring translocation of free daughters Data on file; Blue Earth Therapeutics 2024

²²⁵Ac Daughters

- Significant area of interest for alpha-labelled radiopharmaceuticals.
- What is the impact on therapeutic index of translocation of daughters, if any?
- How do we characterise this and how do we account for it in dosimetry?
 - Novel counting techniques, multi energy window dosimetry, separating ²²¹Fr from ²¹³Bi emissions⁵.

Blue Earth Therapeutics ABracco Company

Why not use an alpha emitter with simpler decay chain?

Modelled data: Tumour absorbed dose implications of a shorter-lived radionuclide: 212 Pb (~10-hour T^{1/2}) vs. 225 Ac (~10-day T^{1/2})*

N.B. Absorbed dose \propto area under curve

Represents theoretical 'lost' tumour absorbed dose due to radioactive decay for same administered activity

Time frame start, days	Time frame end <i>, days</i>	Relative dose contribution (²²⁵ Ac)	Relative dose contribution (²¹² Pb)	%Diff
0	1	0.933	0.489	-48%
1	2	0.856	0.101	-88%
2	3	0.786	0.021	-97%
3	4	0.721	0.004	-99%
4	5	0.662	0.001	-100%
5	15	4.253	0.000	-100%

As expected, a much higher proportion of the tumour dose is delivered at a later time point for the longer-lived radionuclide.

In theory the tumour would receive **92% less** absorbed dose per unit administered activity when using ²¹²Pb compared with ²²⁵Ac.

Assumptions:

1.No translocation of daughter radionuclides for either ²¹²Pb or ²²⁵Ac (i.e., all decays occur within primary binding site)
2.Assume similar RBE of ²²⁵Ac and ²¹²Pb

Impact on Therapeutic Index

 For radiopharmaceuticals with longer tumour retention than normal organ retention, a longer half-life radionuclide will always provide better therapeutic index:

Using a radionuclide with T _(1/2) of ~10 hours would result in a therapeutic ratio reduction				
when compared to of $T_{(1/2)} \sim 10$ days:	% Change in therapeutic ratio			
	Tumour to Kidney	Tumour to Salivary		
	-54.0%	-51.4%		

It is vital to use a therapeutic radionuclide for PSMA targeted therapy, whose physical half-life exploits the biological half-life of the radiopharmaceutical in the tumour in order to optimise the therapeutic ratio.

NB: ²¹²Pb does still suffer from some translocation of ²¹²Bi due to demetallation⁶.

Modelled from example tumour data with ¹⁷⁷Lu assuming equivalent RBE and no translocation of daughters.. Data on File; Blue Earth Therapeutics 2024

10

Why Dosimetry for TAT?

- Confirmation of PK demonstrating the modelling shown is accurate in patients.
- Can we quantify impact of translocation of daughters from ²²⁵Ac (e.g. ²¹³Bi)?
- Difficult with ²²⁵Ac should Dosimetry be a reason to switch radionuclide?
 - No! Use the optimal radionuclide for therapeutic efficacy, resolve challenges around that.
- Regulatory perspective: demonstrate PK repeatability across radionuclides.
- Calculate absorbed doses to normal organs for correlation with observed toxicity.

S-value (dose factor) Physical characteristics of the radionuclide Source/target geometry
 patientspecific

Key existing Standards and Gaps for TAT

12

Standards:

- MIRD Dose calculation schema for alpha emissions⁷.

Gaps:

- Existing European primary standards for ²²⁵Ac radioactivity measurements.
- Robust production of contaminant-free ²²⁵Ac radioisotope.
- Standards of radiochemical purity testing.

- Dosimetry standards specific to alpha-emission (EANM guidelines do not mention ²²⁵Ac).

THIS IS BACKWARDS!

Areas of Research Interest for BET

- Our ²²⁵Ac pipeline offers significant opportunity for collaboration in AlphaMets, in line with current objectives.
- We are also supporting a PhD on machine learning in alpha dosimetry.
- **Alpha Metrology** Clinical studies in which BET are involved will require reliable and accurate methods for measuring activities of alpha-emitting radiopharmaceuticals (*e.g. for calibration purposes*).
- *Image reconstruction* Enable sufficient quality imaging of alphaemitting radionuclides to facilitate alpha dosimetry.
- *Manufacturing* Enable use of reliable best standards for radiochemical purity testing of alpha-emitting radiopharmaceuticals.

© Blue Earth Therapeutics Ltd 2024. Confidential.

Concluding Remarks

- BET are keen to support scientific development and collaborating in areas of research relating to the clinical use of alpha-emitting radiopharmaceuticals.
- Key areas of interest are *alpha metrology, image reconstruction* and *manufacturing*.
- We look forward to hearing any other areas audience believe fruitful collaboration may be possible outside of these.
- We are already working towards several of these within on-going projects (Alphamet, UCL PhD Studentship, A4I).

Source Holder

(diagram credit P.A. Oliveira)

Thank you for your time

Happy to take further questions at:

ben.fongenie@blueearthtx.com