203{}^{\text{Pb}}/212{}^{\text{Pb}} \text{ Image-guided alpha-particle therapy for cancer. Progress and Metrology Challenges}

February 2024

NYSE: CATX
Legal Disclaimers

This presentation contains forward-looking statements within the meaning of the United States Private Securities Litigation Reform Act of 1995. Statements in this presentation that are not statements of historical fact are forward-looking statements. Words such as “may,” “will,” “should,” “expect,” “plan,” “anticipate,” “could,” “intend,” “target,” “project,” “estimate,” “believe,” “predict,” “potential” or “continue” or the negative of these terms or other similar expressions are intended to identify forward-looking statements, though not all forward-looking statements contain these identifying words. Forward-looking statements in this presentation include statements concerning, among other things, the Company’s clinical development plans and the expected timing thereof; the expected timing for availability and release of data; the Company’s timing and expectations regarding regulatory communications, submissions and approvals; expectations regarding the potential market opportunities for the Company’s product candidates; the potential functionality, capabilities and benefits of the Company’s product candidates; the potential size of the commercial market for the Company’s product candidates; the Company’s expectations, beliefs, intentions, and strategies regarding the future; and other statements that are not historical fact.

The Company may not actually achieve the plans, intentions or expectations disclosed in the forward-looking statements and you should not place undue reliance on the forward-looking statements. These forward-looking statements involve risks and uncertainties that could cause the Company’s actual results to differ materially from the results described in or implied by the forward-looking statements, including, without limitation, the Company’s ability to continue as a going concern, the potential that regulatory authorities may not grant or may delay approval for the Company’s product candidates; uncertainties and delays relating to the design, enrollment, completion and results of clinical trials; unanticipated costs and expenses; early clinical trials may not be indicative of the results in later clinical trials; clinical trial results may not support regulatory approval or further development in a specified indication or at all; actions or advice of regulatory authorities may affect the design, initiation, timing, continuation and/or progress of clinical trials or result in the need for additional clinical trials; the Company may not be able to maintain regulatory approval for the Company’s product candidates; delays, interruptions or failures in the manufacture and supply of the Company’s product candidates; the size and growth potential of the markets for the Company’s product candidates, and the Company’s ability to service those markets; the Company’s cash and cash equivalents may not be sufficient to support its operating plan for as long as anticipated; the Company’s expectations, projections and estimates regarding expenses, future revenue, capital requirements and the availability of and the need for additional financing; the Company’s ability to obtain additional funding to support its clinical development programs; the availability or potential availability of alternative products or treatments for conditions targeted by the Company that could affect the availability or commercial potential of its product candidates; the ability of the Company to manage growth and successfully integrate its businesses; whether the Company can maintain its key employees; whether there is sufficient training and use of the Company’s products and product candidates; the market acceptance and recognition of the Company’s products and product candidates; the Company’s ability to maintain and enforce its intellectual property rights; whether the Company can maintain its therapeutic isotope supply agreement with the DOE; whether the Company will continue to comply with the procedures and regulatory requirements mandated by the FDA for additional trials, Phase 1 and 2 approvals, Fast Track approvals, and 510(k) approval and reimbursement codes; and any changes in applicable laws and regulations. Other factors that may cause the Company’s actual results to differ materially from those expressed or implied in the forward-looking statements in this presentation are described under the heading “Risk Factors” in the Company’s most recent Transition Report on Form 10-KT and the Company’s most recent Quarterly Report on Form 10-Q, each filed with the Securities and Exchange Commission (the “SEC”), in the Company’s other filings with the SEC, and in the Company’s future reports to be filed with the SEC and available at www.sec.gov.

Forward-looking statements contained in this presentation are made as of this date, and the Company undertakes no duty to update such information whether as a result of new information, future events or otherwise, except as required under applicable law.
Radiopharmaceuticals are a Pillar of Oncology Treatment
Unique Mechanism of Action Offers Pan-Cancer Opportunities

- **Molecularly Targeted Radiation**
 - Radioligands can precisely deliver radiation directly to cancer cells reducing off-target effects
 - Proven pillar of cancer treatment
 - **Perspective’s platform technology is optimized for greater efficacy and fewer side effects**

- **Optimized Patient Selection**
 - Molecular imaging companion diagnostics enable visualization of the therapeutic target
 - Enables the selection of patients who may best respond to therapy
 - **Perspective’s elementally matched isotopes are paired for imaging and therapy**

- **Monotherapy Activity and Combination Synergies**
 - Ability for both monotherapy and combination treatments
 - Potential synergies with DNA damage response and immune checkpoint inhibitors
 - **Perspective’s targeted alpha therapy delivers potent and immunostimulatory radiation to tumor**

- **Outpatient Friendly**
 - Modern medical isotopes enable radiopharmaceuticals to be administered outside of hospitals
 - Treatments are easily-accessible globally with several hundred therapeutic locations in the U.S alone
 - **Perspective’s short half-life isotopes simplify patient administration and waste management**

- **Unique Business Opportunity**
 - Radiopharmaceutical theranostic product development is highly-specialized and technical
 - Greater expertise needed than for standard medicines potentially creating higher barriers to entry
 - **Perspective develops patent-protected best-in-class intellectual property**
α-Particles Have Superior Tumor Killing Properties vs. β-Particles

More Powerful Effects Than Approved β Therapy
- Higher atomic mass
- Lethal double-stranded DNA breaks
- DNA repair mechanisms overwhelmed

Precision Delivery Provides Targeted Cell Destruction
- Deposit energy over 3-5 cell diameters vs. beta particles (up to 200 cells)

Anti-Tumor Immune Response
- Evidence for antitumor response alone or in combination with immunotherapies
- Consistent with “Abscopal effect” observed with external beam radiation therapy

α-particles are >7,000-fold greater in atomic mass
Management Team
Deep Experience in Radiopharmaceuticals and Oncology Drug Development

Thijs Spoor
Chief Executive Officer
20+ years of expertise in biotechnology companies; public and private companies; oncology and nuclear pharmacy

Markus Puhlmann, MD MBA
Chief Medical Officer
20+ years of oncology drug development across all phases, experience coordinating multiple regulatory filings

Michael Schultz, PhD
Co-Founder and Chief Science Officer
20+ years industry and research experience in radiopharmaceuticals; inventor of Perspective radiopharmaceutical products

Jonathan Hunt
Chief Financial Officer
20+ years of expertise in financial controls and public accounting for large and small companies across multiple industries

Frances Johnson, MD
Co-Founder and Chief Innovation Officer
20+ years in clinical trials execution, managing academic research programs, and start-up of CareDx, Inc.

Amos Hedt
Chief Business Strategy Officer
20+ years of expertise in early-stage pharmaceutical and biotech drug development; 10+ years in radiopharmaceuticals
Platform Expansion Engine

Two Lead Programs in Clinic and Broad Proprietary Pipeline

<table>
<thead>
<tr>
<th>Program</th>
<th>Indication</th>
<th>Discovery</th>
<th>Human Clinical Imaging</th>
<th>First in Human Therapy</th>
<th>Phase 1/2</th>
<th>Phase 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>VMT-α-NET</td>
<td>Neuroendocrine cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pheochromocytomas, paragangliomas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Small cell lung cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VMT01</td>
<td>Melanoma (MC1R)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VMT02 (PET agent)</td>
<td>Melanoma (imaging of MC1R)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Program 3 (Novel peptide)</td>
<td>Multiple solid tumors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSV401 (Radio-hybrid)</td>
<td>Prostate (PSMA imaging & therapy)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Program 5 (Novel peptide)</td>
<td>Prostate, Breast</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other Programs</td>
<td>Solid and hematological tumors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lead-212 (212Pb): The Optimal Therapeutic Isotope

Alpha Particles Provide Numerous Benefits Over Currently Used Beta Particle Radiotherapies

- With a much higher atomic mass, alpha (α) particles generate more energy and travel a shorter distance compared to beta (β) particles, making them more cytotoxic, while reducing their off-targeting effects on healthy tissue.
- Alpha radiation causes direct lethal double-stranded DNA breaks, vs indirect single-stranded breaks in beta (β) radiation.
- Cell death expected – NO resistance.
- Greater therapeutic efficacy expected to improve outcomes with better safety.

<table>
<thead>
<tr>
<th></th>
<th>Lead (212Pb)</th>
<th>Iodine (131I)</th>
<th>Lutetium (177Lu)</th>
<th>Actinium (225Ac)</th>
<th>Implication 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emission Profile</td>
<td>Alpha</td>
<td>Beta</td>
<td>Beta</td>
<td>Alpha</td>
<td>Potent</td>
</tr>
<tr>
<td>Half Life</td>
<td>0.46 days</td>
<td>8 days</td>
<td>6.7 days</td>
<td>10 days</td>
<td>High dose-rate</td>
</tr>
<tr>
<td>Off Target Toxicity Risk</td>
<td>Low</td>
<td>Very high</td>
<td>Low</td>
<td>High</td>
<td>Best</td>
</tr>
<tr>
<td>Supply</td>
<td>High</td>
<td>High</td>
<td>Low</td>
<td>Low</td>
<td>Abundant</td>
</tr>
<tr>
<td>Cost of Production</td>
<td>Low</td>
<td>Low</td>
<td>High</td>
<td>High</td>
<td>High margin</td>
</tr>
</tbody>
</table>

1Company estimates and assumptions based on current literature and known physical constants.
Pb-based Theranostics Enable Both Diagnosis and Targeted Treatment of Cancer

Identical Distribution of ^{203}Pb and ^{212}Pb for Imaging and Treatment, Respectively

- **Imaging**
 - Dosimetry: $T_{1/2} = 52\text{ h}$

- **Therapeutic**
 - Dosimetry: $T_{1/2} = 11\text{ h}$

^{203}Pb can be used to establish ^{212}Pb pharmacokinetics

Cancer Cell

Targeting ligand

Linker

^{203}Pb

^{212}Pb

Patient selection
Neuroendocrine Tumors: VMT-α-NET

Targeting the somatostatin receptor to treat rare neuroendocrine-type cancers
VMT-α-NET Currently in Phase1/2a Studies: Key Facts

Targeting somatostatin receptor type 2 (SSTR2) for the imaging and treatment of neuroendocrine tumors

Initiated first-in-human imaging (2021) & therapy (2022) under compassionate use

Fast Track Designation for first line therapy received October 2022
Therapeutic Trial in first line setting currently recruiting under open IND

US Phase 1 prospective dosimetry study in PRRT refractory patients recruiting at the University of Iowa
VMT-α-NET Shows Significant Improvement vs Standard of Care in Preclinical Models

Superior Efficacy with Single Dose or Multiple Administrations

[212Pb]VMT-α-NET (1 x 120 µCi)

[177Lu]DOTATATE (3 x 500 µCi)

[212Pb]VMT-α-NET (4 x 30 µCi)
Rapid Tumor Targeting and Renal Clearance

High Tumor Retention

- Tumors visible within 1 hour indicates rapid binding to SSTR2 target
- High intensity above background implies excellent therapeutic window
- Unbound drug in bladder within 1 hour for excretion
- Low renal retention due to neutral charge on proprietary Pb-specific chelator

203Pb SPECT Imaging Reveals Favorable VMT-α-NET Properties

Muller et al., Clin. Nucl. Med. 2023
212Pb SPECT/CT Imaging Confirms VMT-α-NET Tumor Uptake

Diagnostic and Therapeutic Show Same Uptake and Retention Characteristics

- Both 203Pb and 212Pb can be imaged directly using SPECT
- SPECT/CT shows very rapid tumor uptake and retention of $[^{212}$Pb]VMT-α-NET
- After 24 hours more than 80% of alpha particles will be generated
- This high alpha dose rate is ideally matched to the biological clearance of the VMT-α-NET peptide
Almost Complete Response After 3 Doses of $[^{212}\text{Pb}]\text{VMT-} \alpha\text{-NET}$

Metastatic NET Pancreas with Adrenal Crisis – PET/CT

(S.ACTH)1 – 790 pg/ml

S.ACTH – 96 pg/ml
212Pb is Plentiful, Storable, Scalable & Suitable for Distributed Logistics

The supply chain is lower-risk and more robust than other therapeutic isotopes.

<table>
<thead>
<tr>
<th>Isotope Source</th>
<th>Isotope Purification</th>
<th>Product Manufacturing</th>
</tr>
</thead>
</table>
| Naturally occurring in mining waste
Also produced in industrial nuclear processes
Can be made on demand if needed | Parent isotope Thorium-228 can be stored (2 yr half-life)
212Pb purified from 228Th or 224Ra source in simple separation step | VMT-α-GEN 212Pb generator technology scales for commercial production
Extremely pure isotope allows straight forward manufacturing process |
| All other therapeutic isotopes require capital-intensive infrastructure manufacturing processes (irradiation) | VMT-α-GEN enables shipping of isotope and purification of 212Pb in one package | 10.5 hr half life of 212Pb allows for robust regional distribution of finished radiopharmaceuticals |
^{212}Pb Isotope Decay Chain and Importance of the Pb-Specific Chelator

Where the drug goes = where the alpha particle is deposited

- Perspective’s proprietary chelator retains 98% of ^{212}Bi after transition in drug formulation
- Generic chelators leak the ^{212}Bi alpha-emitting daughter up to 36%\(^1\)

\(^1\)Mirzadeh et al., Radiochimica Acta, 1993
225Ac Isotope Decay Chain and Potential for Off-Target Toxicity

Alpha-particle emission imparts sufficient “recoil” energy to break chemical bonds.
Summary

Thank you!

- Cancer targeted alpha-particle radionuclide therapy for cancer emerging as a potent approach to cancer treatment
- ^{212}Pb has ideal properties for cancer therapy
- Imaging of ^{203}Pb and ^{212}Pb are powerful tools for radiopharmaceutical development and patient care
- Decay series of alpha-particle emitters has presented a measurement challenge to the metrology community