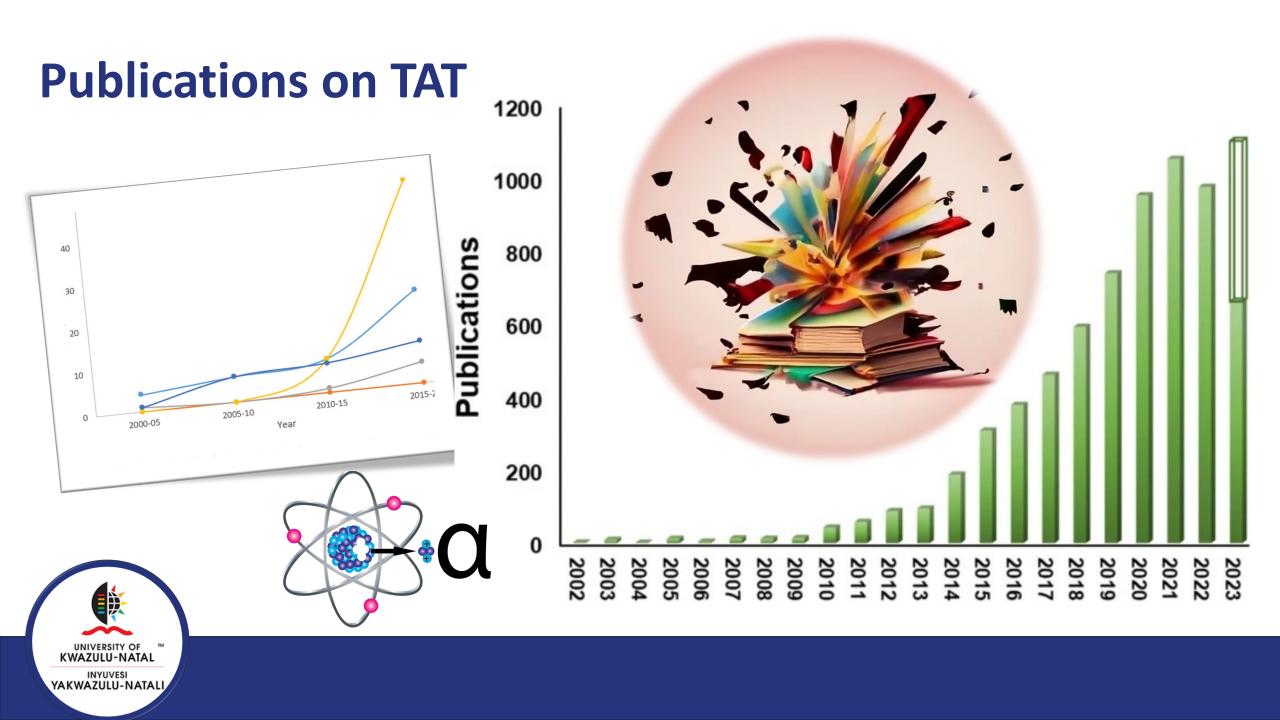
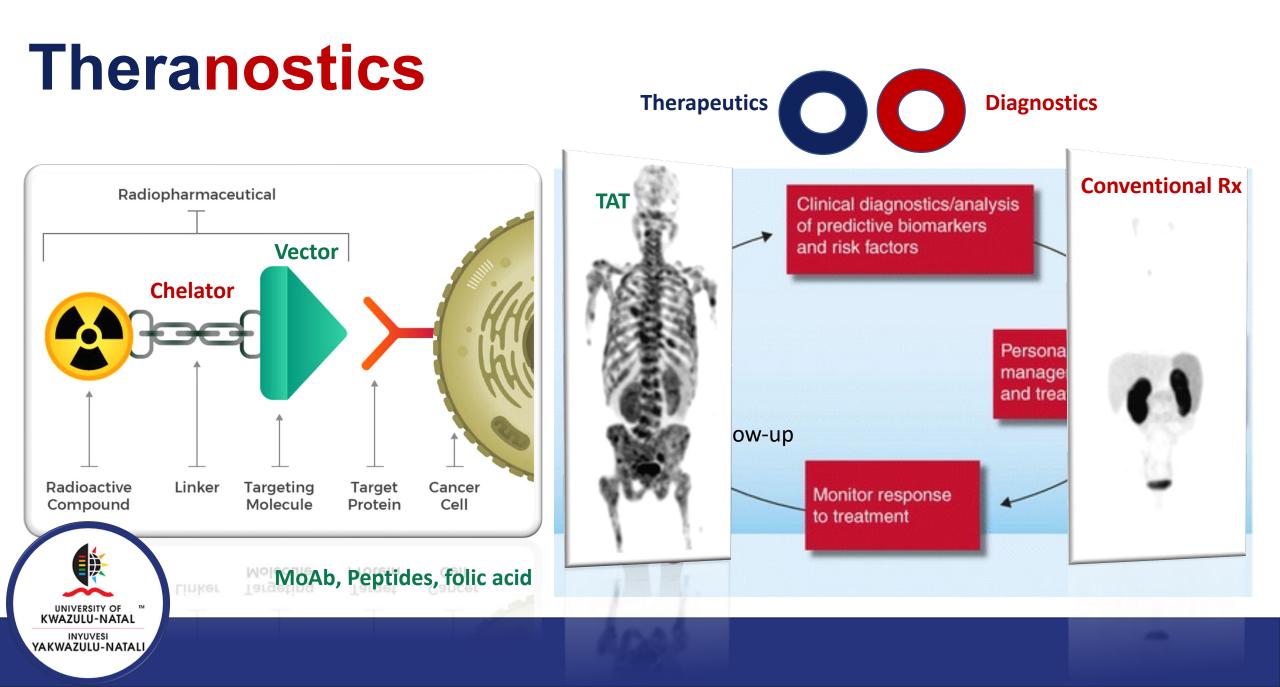

Clinical Applications of Targeted Alpha Therapy (TAT): Present and Future

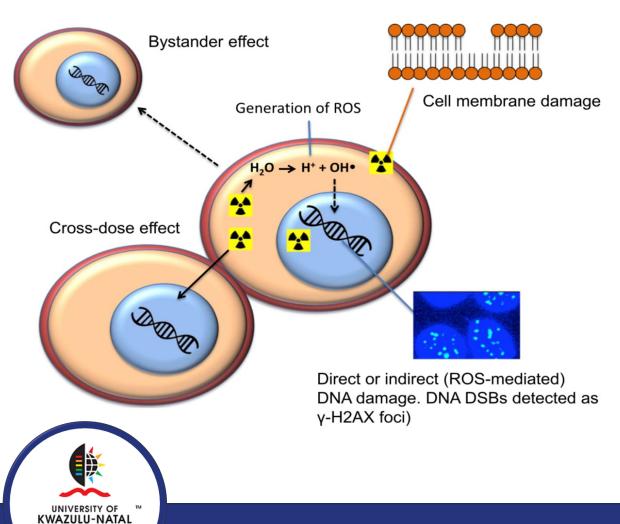

Prof Mariza Vorster


Head Of Department: Dept of Nuclear Medicine University of KwaZulu-Natal President of the Colleges of Nuclear Physicians MBChB, MMed (NuclMed), MPharmMed (cum laude), FCNP(SA),PhD

February 2024 Paris

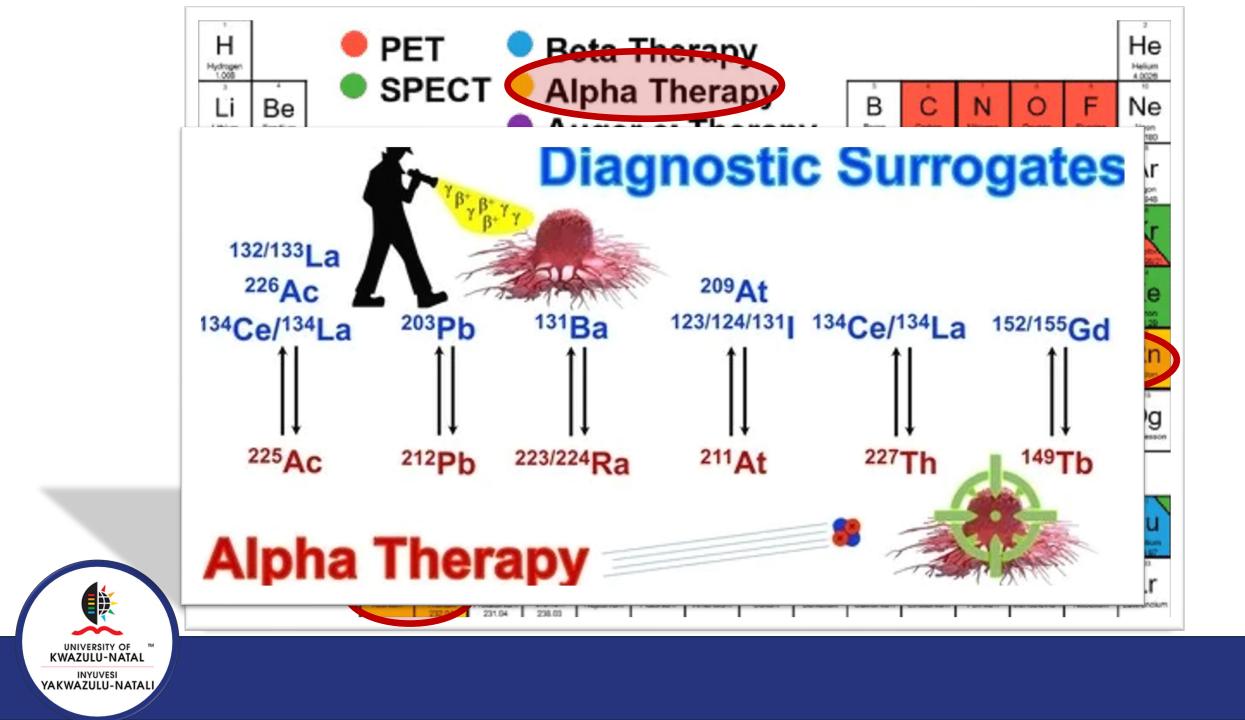
UNIVERSITY OF KWAZULU-NATAL INYUVESI YAKWAZULU-NATALI

Basic principles


Types of radiation

Single vs Double-stranded DNA breaks

Basic principles


INYUVESI YAKWAZULU-NATALI

Linear Energy Transfer (LET) 120 keV/µm 0 keV/µm Auger Electron Beta (β) Particle Alpha (a) Particle 8000 x bigger 3-7 x greater biol effect Less resistance **Greater abscopal effect**

Molecular Imaging and Biology (2023) 25:991–1019

Targeted Alpha-Particle Therapy: A Review of Current Trials

Albert Jang ¹, Ayse T. Kendi ², Geoffrey B. Johnson ^{2,3}, Thorvardur R. Halfdanarson ⁴ and Oliver Sartor ^{2,4,5,*}

Trial Number	Alpha Particle	Target	Agent(s)	Setting	Primary Outcome Measures
			Cornell		
NCT03276572	²²⁵ Ac			mCRPC treated with prior ARPI	DLT, MTD
NCT04506567	²²⁵ Ac	PSMA	²²⁵ Ac-J591	mCRPC treated with prior ARPI	DLT, MTD, RP2D
NCT04576871	²²⁵ Ac	PSMA	²²⁵ Ac-J591	mCRPC treated with prior ARPI	DLT
NCT04886986	²²⁵ Ac	PSMA	²²⁵ Ac-J591 with ¹⁷⁷ Lu-PSMA-I&T	mCRPC treated with prior ARPI	DLT, MTD, RP2D PSA decline
NCT04946370	²²⁵ Ac	PSMA	²²⁵ Ac-J591 with pembrolizumab and ARPI	mCRPC treated with prior ARPI	DLT, RP2D, response rate
NCT05567770	²²⁵ Ac	PSMA	²²⁵ Ac-J591	mHSPC	DLT, MTD
		F	Jusion Pharmaceuticals		
NCT03746431	²²⁵ Ac	IGF-1R	²²⁵ Ac-FPI-1434	IGF-1R-positive solid tumors refractory to standard therapies	AE, DLT, ORR
NCT05605522	²²⁵ Ac	NTSR1	²²⁵ Ac-FPI-2059	NTSR1-positive solid tumors refractory to standard therapies	AE, MTD
NCT05219500	²²⁵ Ac	PSMA	²²⁵ Ac-FPI-2265 (PSMA-I&T)	mCRPC with prior ARPI	PSA50, safety
			Bayer		
NCT04147819	²²⁷ Th	HER2	BAY2701439	HER2-positive solid tumors refractory to standard therapies	AE, ORR
			AdvanCell		
	²¹² Pb	PSMA	²¹² Pb-ADVC001	mCRPC with prior ARPI and no prior exposure to ¹⁷⁷ Lu	RP2D
			Novartis		
	⁵ Ac	PSMA	²²⁵ Ac-PSMA-617	mCRPC	RP2D
IVERSITY OF ZULU-NATA INYUVESI AZULU-NATA			nical t	riala	

Trial Number	Table 1. Alpha Particle	Cont. Target	Agent(s)	Setting	Primary Outcome Measures				
Radiomedix and Orano Med									
NCT03466216	²¹² Pb	SSTR2	²¹² Pb-DOTAMTATE	SSTR2-positive neuroendocrine tumors refractory to standard therapies	DLT, MTD				
NCT05153772	²¹² Pb	SSTR2	²¹² Pb-DOTAMTATE	SSTR2-positive neuroendocrine tumors refractory to standard therapies	ORR, AE				
			RayzeBio						
NCT05477576	²²⁵ Ac	SSTR2	RYZ101	SSTR2-positive gas- troenteropancreatic neuroendocrine tumors with prior ¹⁷⁷ Lu therapy	RP3D, PFS				
NCT05595460	²²⁵ Ac	SSTR2	RYZ101 with carboplatin, etoposide, and atezolizumab	SSTR2-positive extensive-stage small-cell lung cancer	RP2D, safety, tolerability				
			Orano Med						
NCT05283330	²¹² Pb	GRPR1	²¹² Pb-DOTAM-GRPR1 solid tumors refractory to standard therapies		RP2D				
		Ac	tinium Pharmaceuticals						
NCT03441048	²²⁵ Ac	CD33	 ²²⁵Ac-lintuzumab with cladribine, cytarabine, filgrastim, and mitoxantrone Relapsed/refractory AML 		DLT, MTD, AE, O				
NCT03867682	²²⁵ Ac	CD33	²²⁵ Ac-lintuzumab with venetoclax	Relapsed/refractory AML	MTD, overall response				

Int. J. Mol. Sci. 2023, 24, 11626

Ac-225

PSMA

HER-2

K

UNIVERSITY OF

INYUVESI YAKWAZULU-NATALI Pb-212

IGF-IR

SSTR-2

CD33

At-211

Table 2. Current active and recruiting investigator-initiated clinical trials using targeted alpha therapy.

Trial Number	Alpha Particle	Target	Agent(s)	Setting	Primary Outcome Measures
NCT05275946	²¹¹ At	Thyroid tissue	TAH-1005	Differentiated thyroid cancer refractory to standard therapies	AE, DLT
N/A	²¹¹ At	Norepinephrine transporter	²¹¹ At-meta- astatobenzylguanidine	Pheochromocytoma and paraganglioma	Safety, MTD, phase 2 dose
NCT04083183	²¹¹ At	CD45	²¹¹ At-BC8-B10	Hematopoietic stem cell transplant regimen for non-malignant hematologic diseases	Graft rejection
NCT03670966	²¹¹ At	CD45	²¹¹ At-BC8-B10	Hematopoietic stem cell transplant regimen for malignant hematologic diseases	Toxicity
NCT04579523	²¹¹ At	CD38	²¹¹ At-OKT-B10 and fludarabine	Newly diagnosed, recurrent, or refractory high risk multiple myeloma	MTD
NCT04466475	²¹¹ At	CD38	²¹¹ At-OKT-B10 and melphalan	Relapsed or refractory multiple myeloma after at least 3 lines of prior therapy	MTD
NCT05363111	²²⁵ Ac	CD38	²²⁵ Ac-DOTA- daratumuab and daratumumab	Relapsed or refractory multiple myeloma after at least 2 lines of prior therapy	DLT, MTD
NCT05204147	²²⁵ Ac	CEA	²²⁵ Ac-DOTA-M5A	Metastatic solid tumors expressing CEA	AE, MTD

Clinical trials

Int. J. Mol. Sci. 2023, 24, 11626

Most likely to create a *Big Bang...*?

$\begin{array}{c} \text{Ac-225} \\ \hline \\ \hline \\ \hline \\ \hline \\ \end{array} \end{array} \begin{array}{c} \hline \\ \hline \\ \hline \\ \hline \\ \end{array} \end{array}$

Production & Preparation Physics: Half-life: 10 days, 4x Alpha emission, recoil Partner with Gallium-68 PSMA, DOTATATE

UNIVERSITY OF

Radio-	α - Recoil
uclides	Energies
²²⁵ Ac	104.8 keV
²²¹ Fr	116.3 keV
²¹⁷ At	132.8 keV
²¹³ Bi	112.0 keV
²¹³ Po	160.4 keV

Actinium

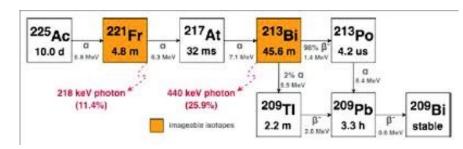


FIGURE 6. Swimmer plots showing duration of tumor control in months (A) and relative to duration of previous treatment lines (B).

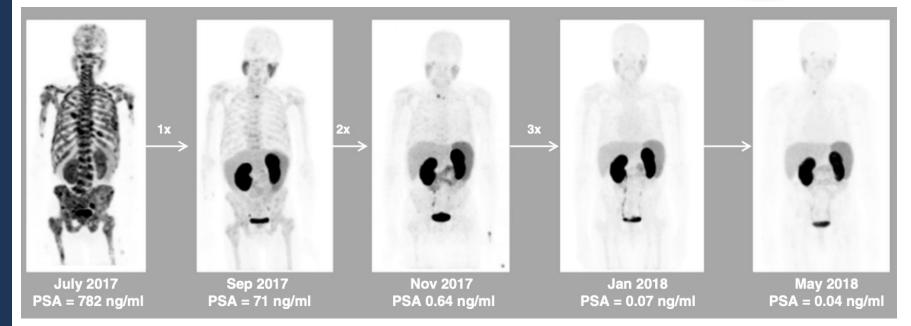
J Nucl Med 2018; 59:795-802

⁸⁹ AC Actinium (225)

Ac-225-PSMA $\star \star \star \star \star$

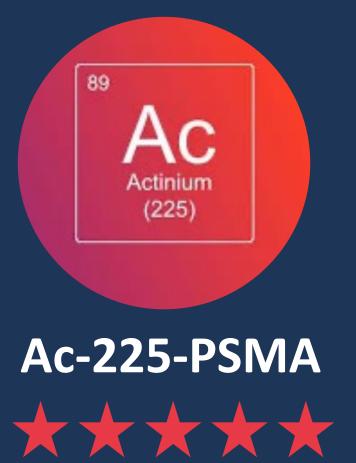
Various clinical scenarios: Chemotherapy-naive

European Journal or Nuclear Medicine and Molecular Imaging (2019) 40:129-138 https://doi.org/10.1007/s00259-018-4167-0


ORIGINAL ARTICLE

CrossMark

²²⁵Ac-PSMA-617 in chemotherapy-naive patients with advanced prostate cancer: a pilot study

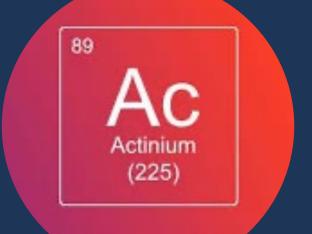

Mike Sathekge¹ · Frank Bruchertseifer² · Otto Knoesen³ · Florette Reyneke¹ · Ismaheel Lawal¹ · Thabo Lengana¹ · Cindy Davis¹ · Johncy Mahapane¹ · Ceceila Corbett¹ · Mariza Vorster¹ · Alfred Morgenstern^{1,2}

Received: 19 August 2018 / Accepted: 12 September 2018 / Published online: 19 September 2018 \odot The Author(s) 2018

Group A=Combination of conventional therapy 71 % decrease in tumour markers Group B: Rx naive 92% decrease in tumour markers

s-PSA response after a single dose (@8w)

Various Clinical scenarios: Post-ADT


FEATURED ARTICLE OF THE MONTH

mCRPC Patients Receiving ²²⁵Ac-PSMA-617 Therapy in the Post–Androgen Deprivation Therapy Setting: Response to Treatment and Survival Analysis

Mike Sathekge^{1,2}, Frank Bruchertseifer³, Mariza Vorster¹, Ismaheel O. Lawal^{1,2}, Otto Knoesen⁴, Johncy Mahapane¹, Cindy Davis¹, Amanda Mdlophane², Alex Maes^{1,5}, Kgomotso Mokoala¹, Kgomotso Mathabe⁶, Christophe Van de Wiele^{*1,7}, and Alfred Morgenstern^{*1,3}

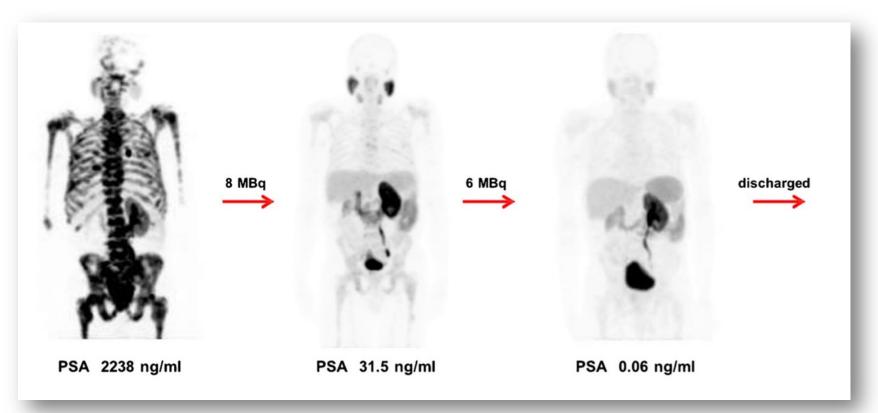
- Any PSA response in 91% of patients
- Undetectable level of serum PSA in 36%.
- A decline in serum PSA by at least 50% was significantly associated with a longer OS.
- A PSA decline of at least 50%, a low pre-treatment platelet level, and radiographic response on ⁶⁸Ga-PSMA-11 PET/CT were significant predictors of a longer PFS.

Ac-225-PSMA $\bigstar \bigstar \bigstar \bigstar \bigstar$

Various Clinical scenarios:

Hormone sensitive

UNIVERSITY OF KWAZULU-NATAL INYUVESI YAKWAZULU-NATAL European Journal of Nuclear Medicine and Molecular Imaging (2023) 50:2210–2218 https://doi.org/10.1007/s00259-023-06165-9


ORIGINAL ARTICLE

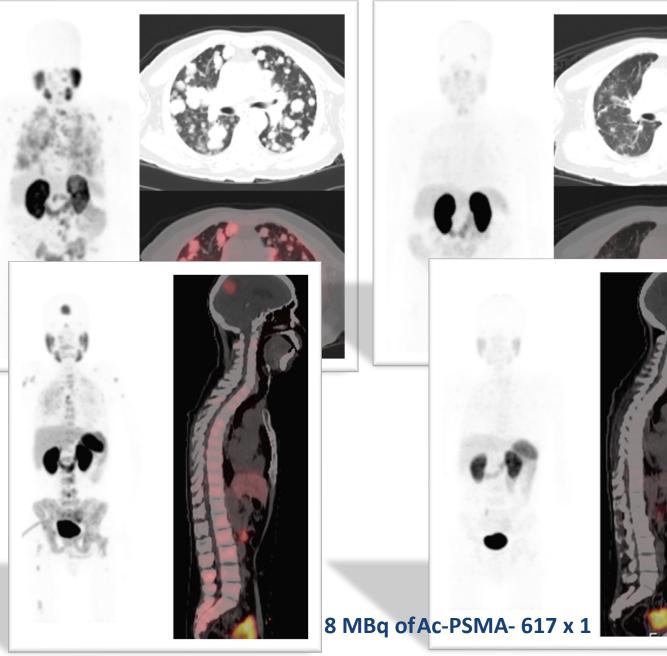
²²⁵Ac-PSMA-617 radioligand therapy of de novo metastatic hormonesensitive prostate carcinoma (mHSPC): preliminary clinical findings

Mike Sathekge^{1,2} · Frank Bruchertseifer³ · Mariza Vorster⁴ · Ismaheel O. Lawal^{1,2} · Kgomotso Mokoala^{1,2} · 'anet Reed^{1,2} · Letjie Maseremule^{1,2} · Honest Ndlovu^{1,2} · Khanyi Hlongwa^{1,2} · Alex Maes^{1,5} · Alfred Morgenstern^{1,3} · 'istophe Van de Wiele^{1,6}

Check fo updates

n=21 (68 cycles) **95% ANY decline in PSA** 86% Decline of ≥ 50% Undetectable PSA in 4 Median PFS 9 months 50% alive at 34 months

EJNMMI (2023) 50:2210-2218



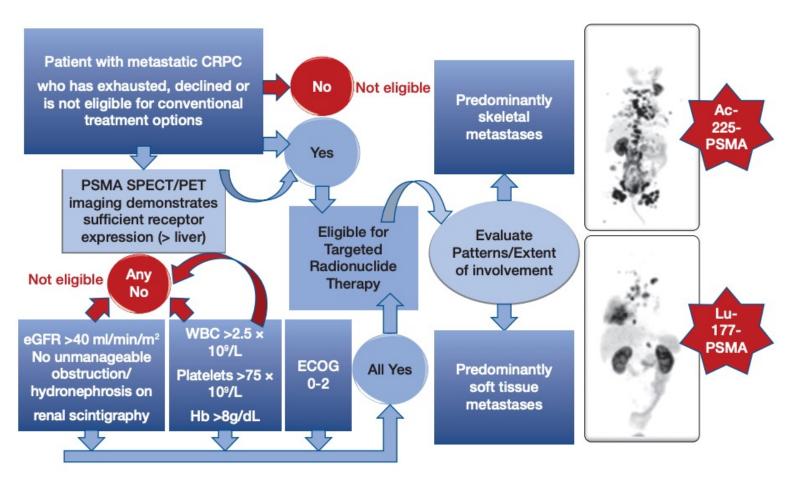
Ac-225-PSMA $\downarrow \downarrow \downarrow \downarrow \downarrow$

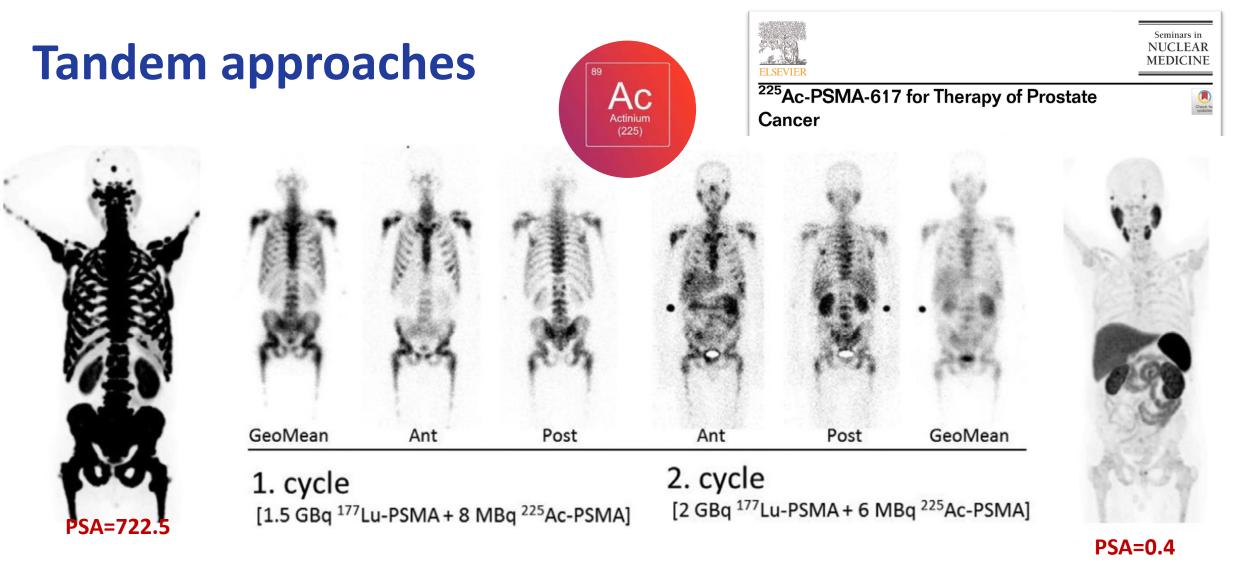
Various Clinical scenarios: ?Hopeless

s-PSA=1897.91 μg/L

s-PSA=17.21 μg/L

Sathekge et al





Actinium-225: Practical aspects

Vorster M & Sathekge MM. Theranostics in Metastatic Castrate Resistant Prostate Cancer 2021 May 27:81-96.

Semin Nucl Med 50:133-140, 2020

Kreish et al.Eur J Nucl Med Mol I. 2020;47(3):721–8. Kulkarni et al. J Nucl Med. 2016;57(Supplement_3):97S-104S.

²²⁵Ac-PSMA Meta-analyses: mounting evidence of efficacy!

Efficacy and Safety of ²²⁵Ac-PSMA-617-Targeted Alpha Therapy in **Metastatic Castration-Resistant Prostate Cancer: A Systematic Review and Meta-Analysis**

Jiao Ma¹, Lanying Li¹, Taiping Liao¹, Weidong Gong¹ and Chunyin Zhang^{1,2,3*}

¹ Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China, ² Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China, ³ Academician (expert) Workstation of Sichuan Province, Luzhou, China

Journal of Nuclear Medicine, published on September 9, 2021 as doi:10.2967/jnumed.121.262017

Effects of ²²⁵Ac-labeled prostate-specific membrane antigen radioligand therapy in metastatic castration-resistant prostate cancer: A meta-analysis Running title: ²²⁵Ac-PSMA RLT effects in mCRPC patients

Dong Yun Lee, MD, PhD,¹ Yong-il Kim, MD, PhD¹

¹Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea

Excellent s-PSA responses, xerostomia NE Prostate WILEY

REVIEW ARTICLE

JNIVERSITY OF **KWAZULU-NATAL** INYUVESI

AKWAZULU-NATAI

Tripathi MD¹

Article | Published: 21 March 202

nd therapy in

²²⁵Ac-PSMA-617-tar: metastatic castration Actinium-225-PSMA radioligand therapy of metastatic ate cancer—a review and meta-anal castration-resistant prostate cancer (WARMTH Act): aqwant Rai Mittal Sanjana Ballal PhD¹ ^{Madha} a multicentre, retrospective study

his article

Sathekge 2024 Lancet Oncol

Side effects/ toxicity of Ac-225-PSMA?

Efficacy and Safety of ²²⁵Ac-PSMA-617-Targeted Alpha Therapy in Metastatic Castration-Resistant Prostate Cancer: A Systematic Review and Meta-Analysis

Jiao Ma¹, Lanying Li¹, Taiping Liao¹, Weidong Gong¹ and Chunyin Zhang^{1,2,3*}

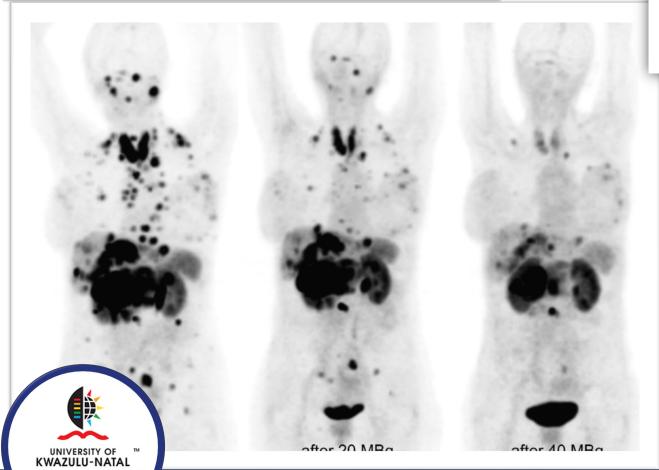
Jiao Ma1, Lanying Li1, Taiping Liao1, Weidong Gong1 and Chunyin Zhang1,2,3*

TABLE 1 | Quality assessment of the included studies based on the Newcastle– Ottawa Scale.

6 studies 201 pts

NO.	Author and year	Selection	Comparability	Outcome	Score
1	Kratochwil et al. (12)	3	1	3	7
2	Sathekge et al. (13)	3	1	3	7
3	van der Doelen et al. (14)	3	1	3	7
4	Satapathy et al. (15)	3	1	2	6
5	Feuerecker et al. (16)	2	1	3	6
6	Sen et al. (17)	3	1	3	7

Xerostomia most common 77.1% (any degree) Grade III 3.0%. Anemia 30.3% (any degree) Grade III 7.5%. Grade III leukopenia 4.5% Thrombocytopenia 5.5% Grade III nephrotoxicity in 3%.



INYUVESI YAKWAZULU-NATALI Seminars in NUCLEAR MEDICINE

argeted α -Emitter Therapy of Neuroendocrine umors

olanta Kunikowska, MD, PhD and Leszek Królicki, MD, PhD

European Journal of Nuclear Medicine and Molecular Imaging https://doi.org/10.1007/s00259-023-06494-9

ORIGINAL ARTICLE

Structural modifications toward improved lead-203/lead-212 peptide-based image-guided alpha-particle radiopharmaceutical therapies for neuroendocrine tumors

 $\label{eq:constraint} \begin{array}{l} \text{Dongyoul Lee}^1 \cdot \text{Mengshi Li}^2 \cdot \text{Dijie Liu}^2 \cdot \text{Nicholas J. Baumhover}^2 \cdot \text{Edwin A. Sagastume}^2 \cdot \text{Brenna M. Marks}^2 \cdot \text{Prerna Rastogi}^3 \cdot \text{F. Christopher Pigge}^4 \cdot \text{Yusuf Menda}^5 \cdot \text{Frances L. Johnson}^2 \cdot \text{Michael K. Schultz}^{2,4,5,6} \end{array}$

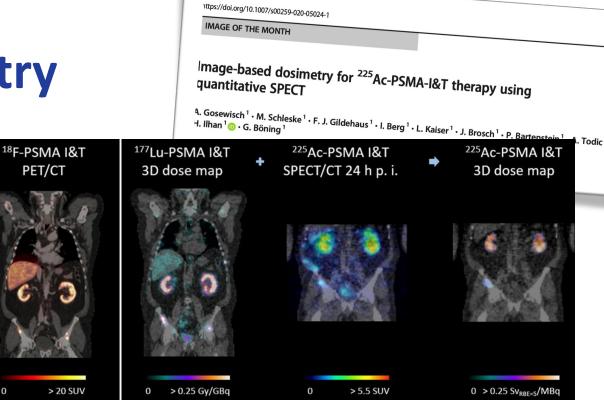
"Preclinical studies described here suggest that PSC-PEG2- TOC has the potential to improve the efficacy of Pb-based a-particle therapy for SSTR2-expressing tumors with a **significantly lower toxicity profile** than previous SSTR2- targeted peptide."

NET: Ac-225-DOTATATE, Pb-212

²²⁵Ac-PSMA Dose & Dosimetry

Phys. Med. Biol. 65 (2020) 235012

Physics in Medicine & Biology


IPEM Institute of Physics and Engineering in Medicine

https://doi.org/10.1088/1361-6560/abbc81

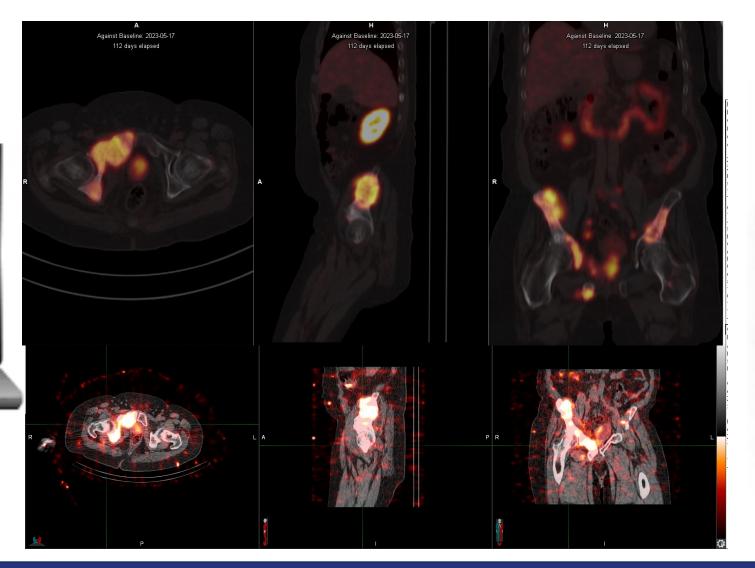
PAPER

Microdosimetry-based determination of tumour control probability curves for treatments with ²²⁵Ac-PSMA of metastatic castration resistant prostate cancer

Pablo Mínguez Gabiña^{1,2}, John C Roeske³, Ricardo Mínguez⁴, Emilia Rodeño^{5,6} and Alfonso Gómez de Iturriaga^{6,7}

Some lesions may not be treated sufficiently at 100kBq/kg

213Po 217At ²²⁵Ac 213p Monte Carlo simulations α α α 32 ms 45.6 m 4.8 m 4.2 us 10.0 d 7.1 MeV 6.3 MeV a 2% a 8.4 MeV Tumour control probability curves 5.9 MeV 440 keV photon 218 keV photon 209B 209ph 209TI (11.4%)(25.9%)2.2 m nageable isotopes 3.3 h stable


EJNMMI Aug 2020

Phys Med Biol 2020

²²⁵Ac-PSMA Dose & Dosimetry

128 x128 matrix
60s per projection
60 projections
(30 per head)
1 bed position
OSEM 5 mm filter
HEGP Collimator

September 2023 22

TARGETED RADIONUCLIDE THERAPY

83

Bi

Bismuth

208.980

Bismuth-213 \star \star \star

> Half-life: 45.6 minutes 1x Alpha emission, no recoil FAPI labeling possibilities NETA/DEPA over DOTA intralesional)

Regional (intravesical, intracerebral,

& systemic approaches

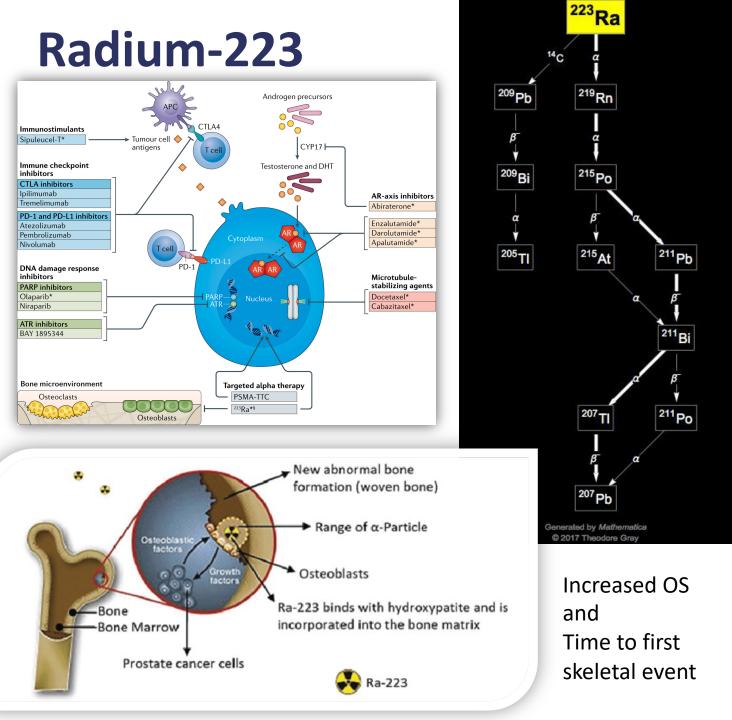
Renal toxicity

>200 patients with leukemia, lymphoma,

melanoma, bladder CA, glioma and NETs treated

SNM 2012 Image of the Year	5-10GBg needed
Size	
Residence time in blood	
Load into tumor tissue	
Radiotoxicity	
	Target/blood ratio
	Imaging contrast

Pharmaceutics 2021, 13, 599 S Ahenkorah et al



Radium-223 Xofigo (FDA approved)

Half-life: 11.4 days GIT and BM Side effects Combination Therapies Sr-89, Sm-153...

UNIVERSITY OF

KWAZULU-NATAL

Radium-223 $\bigstar \bigstar \bigstar \bigstar \bigstar$

Combination Therapies in cancers that spread to bone/

Osteosarcoma

Ass with bone fractures in combination with Abi/pred-ERA 223 trial

Final results due in 2024...

Clinical outcomes and treatment patterns in REASSURE: planned interim analysis of a real-world observational study of radium-223 in metastatic castration-resistant prostate cancer

Table 28. Clinical applications of ²²³Ra in combination with other therapies.

Ra aropean Journal of Nuclear Medicine and Molecular Imaging (2018) 45:824–845 https://doi.org/10.1007/s00259-017-3900-4

GUIDELINES

 $[^{223}R]$

CrossMark

one,

one

38]

Included in NCCN guidelines: mCRPC, sx fractures, no visceral mets EANM guideline for radionuclide therapy with radium-223 of metastatic

castration-resistant prostate cancer

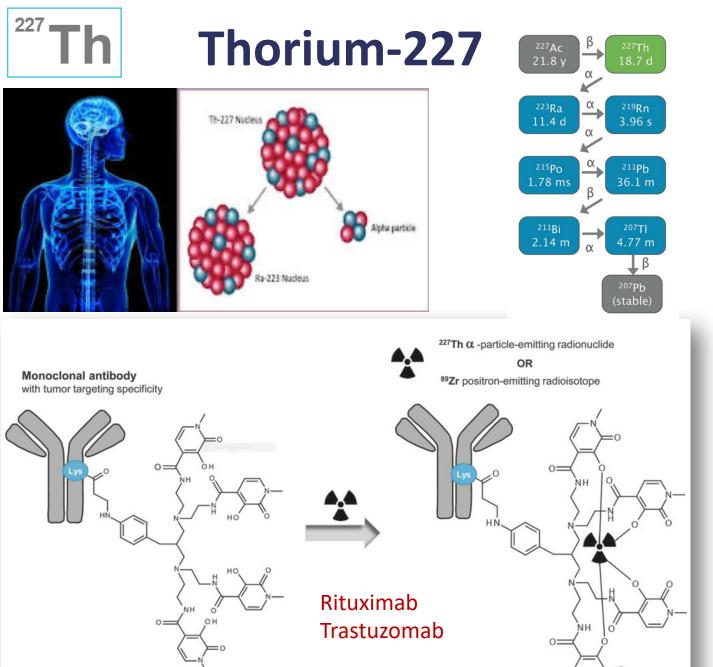
[223]RThorsten D. Poeppel ¹ · Daria Handkiewicz-Junak ² · Michael Andreeff ³ · Alexander Becherer ⁴ · Andreas Bockisch ¹ ·
Eva Fricke ⁵ · Lilli Geworski ⁶ · Alexander Heinzel ⁷ · Bernd J. Krause ⁸ · Thomas Krause ⁹ · Markus Mitterhauser ^{10,11} ·
Wilfried Sonnenschein ¹ · Lisa Bodei ¹² · Roberto C. Delgado-Bolton ¹³ · Michael Gabriel ^{14,15}

[²²³ Ra]Ra-dichloride + Leuprolide acetate,	GnRH-receptor agonist	NCT03361735 (Phase II; ongoing)	Prostate cancer [345]
[²²³ Ra]Ra-dichloride + Pembrolizumab	PDL-1	NCT03093428 (Phase II; ongoing)	Prostate cancer [346]
[²²³ Ra]Ra-dichloride + Atezolizumab	PDL-1	NCT02814669 (Phase I; completed)	Castration-resistant prostate cancer [347]
Alpha-DaRT seeds (²²⁴ Ra containing 316LVM tubes)	Implantation sites	NCT04002479 (Phase not applicable) NCT03970967 (Phase not applicable)	Metastatic pancreatic cancer [348] Metastatic breast cancer [349]

Thorium-227

Half-life: 18.7 days

5x Alpha emission


Recoil, Daughters, Ra-223

Preclinical potential in lymphoma, breast CA, ovarian CA, AML, renal cell CA, mesothelioma, osteosarcoma, mCRPC

TTC=Targeted Thorium-227 conjugates

UNIVERSITY OF

INYUVESI YAKWAZULU-NATALI Can form highly stable chelator complexes-Rx of several hematological- and solid malignancies

Hageman et al, Volume 35, Number 7, 2020

3,2-HOPO chelator moiety covalently linked to the antibody

27 Th

Thorium-227 $\bigstar \bigstar \bigstar$

Thorium-227

Table 30. Clinical applications of ²²⁷Th-labeled radiopharmaceuticals.

Radiopharmaceuticals	Targets	NCT Number ^	Disease
[²²⁷ Th]Th-anti PSMA (BAY2315497)	PSMA	NCT03724747 (Phase I; ongoing)	Metastatic castration-resistant prostate cancer [355]
[²²⁷ Th]Th-anti Mesothelin (BAY2287411)	Mesothelin	NCT03507452 (Phase I; completed)	Advanced recurrent serous ovarian, malignant peritoneal mesothelioma, pancreatic adenocarcinoma [358]
[²²⁷ Th]Th-trastuzumab (BAY2701439)	HER2+	NCT04147819 (Phase I; ongoing)	Cancer with HER2 + expression [359]
[²²⁷ Th]Th-epratuzumab (BAV1862864)	CD22	NCT02581878 (Phase I; completed)	Non-Hodgkin lymphoma [360]
Dose-dependent significant survival benefit in a disseminated model of AML Hagemann, UB., <i>et al</i> , 2016 I	Wickstroem, K., e	Hagemann, OD, et al, 2020	MSLN-TTC plus PD-L1 Demonstrated immune activation by TTCs
Cancers			MD

Article

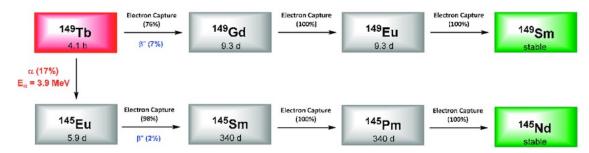
Efficacy of a HER2-Targeted Thorium-227 Conjugate in a HER2-Positive Breast Cancer Bone Metastasis Model

Jenny Karlsson ^{1,*}, Urs B. Hagemann ², Véronique Cruciani ¹, Christoph A. Schatz ², Derek Grant ¹, Christine Ellingsen ¹, Alexander Kristian ¹, Shirin Katoozi ¹, Dessislava Mihaylova ¹, Steinar R. Uran ¹, Mari Suominen ³, Roger M. Bjerke ¹, Olav B. Ryan ¹ and Alan Cuthbertson ¹

Karlsson et al, 2023

 MSLN-TTC in cancers known to express MSLN
 Est. completion: Jul 2028

 NCT03507452 (completed) 1st patient in: 2018
 Monotherapy


Sharma, Pharmaceuticals **2023**, *16*, 1460.

Terbium-149 $\star \star \star \star \star$

Half-life of 4.1 hr B+ 730 keV (7%) PET & Alpha Alpha particles , no daughters Stable DOTA coordination to small LMW Easily cleared Melanoma, leukemia, NET promising Short supply!

Terbium-149

Only alpha-emitting Radio-isotope of Terbium 165 keV and B particle

Major concerns: Large –scale production Decay scheme to longlived radionuclides

Terbium-149 production: a focus on yield and quality improvement towards preclinical application

C. Favaretto^{1,2}, P. V. Grundler², Z. Talip², U. Köster^{3,4}, K. Johnston⁴, S. D. Busslinger², Sprung⁵, C. C. Hillhouse⁶, R. Eichler^{6,7}, R. Schibli^{2,8}, C. Müller^{2,8} & N. P. van der Meuler²

Conclusions

In this study, the production and radiochemical purification of terbium-149 were optimized to provide terbium-149 in quantity and quality, to our knowledge, never achieved in the past, and sufficient for use in more extensive therapeutic preclinical studies than those previously conducted.

Major concern: large scale production

Favaretto et al. Scientific reports (2024) 14:3284

Astatine-211 $\bigstar \bigstar \bigstar \bigstar$

Half-life of 7.21 hours

Single Alpha particle (simplifies dosimetry, less off-target)

Flexible chemistry

Cyclotron production

Stable DOTA coordination

Promising in Thyroid,

NET, hemat ca, Glioma

Astatine-211

vical studies using ²¹¹At. (*NTC number*) is the ClinicalTrials.gov identifier.

Institution, Reference	Clinical situation	Nb. Pts.	Study Objective	TAT-agent	Target	Adminis- tration	Act- ivity	Toxicity/ effect	211 Po
Duke University Medical Center,	Recurrent surgically resected	18	Feasibility and safety	²¹¹ At-ch81C6	tenascin	Surgically created	71–347 MBq	MTD, Not reached	1

IABLE 2 Ongoing and planned cunical trials with --- At. (NIC number) is the Cunical trials.gov identifier.

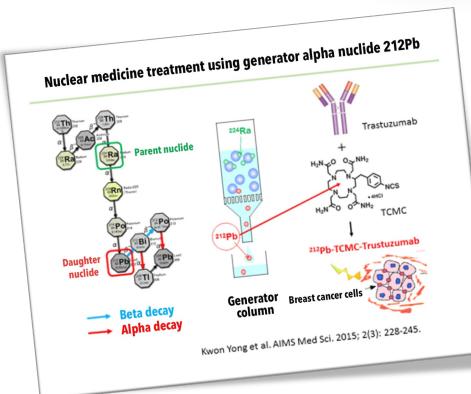
Institution, reference	Clinical situation	Planned size (nb Pts.)	Study objective(s)	TAT- agent/ Carrier	Target	Primary outcome
Fred Hutchinson Cancer Center, Seattle, USA (<i>NCT04466475</i>)	Multiple Myeloma	24	Feasibility and safety	²¹¹ At-OKT10- B10	CD38	MTD
Fred Hutchinson Cancer Center, Seattle, USA (<i>NCT04579523</i>)	Multiple Myeloma	30	Dose escalation	²¹¹ At-OKT10- B10	CD38	MTD
Fred Hutchinson Cancer Center, Seattle, USA (<i>NCT04083183</i>)	HCT for non-malignant disease	40	Dose escalation	²¹¹ At- BC8-B10	CD45	Graft rejection
Fred Hutchinson Cancer Center, Seattle, USA (<i>NCT03670966</i>)	High-risk acute leukemia or MDS	30	Dose-escalation	²¹¹ At- BC8-B10	CD45	Toxicity
Fred Hutchinson Cancer Center, Seattle, USA (<i>NCT03128034</i>)	High-risk AML, ALL, MDS or Mixed-phenotype acute leukemia	50	Dose-escalation	²¹¹ At- BC8-B10	CD45	Toxicity, MTD
Osaka University Hospital, Suita, Japan (<i>NCT05275946</i>)	Thyroid cancer	11	To establish recommended dose for Phase II trial	[²¹¹ At] NaAt	NIS	Treatment- related adverse events
Fukushima Medical University, Japan	Malignant pheochromocytoma	Up to 18	Dose escalation	²¹¹ At-MABG	Norepinephrine transporter	Toxicity, MTD

HCT. Hematopoietic cell transplantation.

²⁰⁷Bi

41.8%

785.36kEv 5.98237MEv



$\mathbf{Lead-212}$

Physics: Half-life: 10.6 hrs
1x alpha, 2x beta emission
Production (3 generator possibilities)
Partner with Pb-203 (t1/2 51.9 hrs)

Pb Pb-212

Potential Clinical applications NET Prostate cancer (RM2 peptide) Metastatic melanoma HER-2 expression (breast, ovarian, gastric) Multiple myeloma

²⁰³TI 203 D EC stable 51.9 h (81%) ²¹²Po 212Bi 212**D** 60.6 m 64% B 10.6 h B-0.3 µs 36% α 208**T**I ²⁰⁸Ph 3.1 m stable B-

Plusses

Tumour cell internalization Rapid normal tissue clearance Promising pre-clin results (tumor growth) Acceptable toxicity profile

Problems/ Precautions

Kidneys may be dose limiting

Dose Escalation and Dosimetry of First-in-Human α Radioimmunotherapy with ²¹²Pb-TCMC-Trastuzumab

Ruby Meredith¹, Julien Torgue², Sui Shen¹, Darrell R. Fisher³, Eileen Banaga², Patty Bunch¹, Desiree Morgan¹, Jinda Fan¹, and J. Michael Straughn, Jr.¹

¹Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama; ²AREVA Med, Bethesda, Maryland; and ³Dade Moeller Health Group, Richland, Washington J Nucl Med 2014; 55:1636–1642

Safety and Outcome Measures of First-in-Human Intraperitoneal α Radioimmunotherapy With ²¹²Pb-TCMC-Trastuzumab

American Journal of Clinical Oncology Volume 41, Number 7,2018

Ruby F. Meredith, MD, PhD,* Julien J. Torgue, PhD,† Tania A. Rozgaja, PhD,† Eileen P. Banaga, MS,† Patty W. Bunch, OCN,‡ Ronald D. Alvarez, MD,‡ J. Michael Straughn Jr, MD,‡ Michael C. Dobelbower, MD, PhD,* and Andrew M. Lowy, MD§

Phase 1 trial of Pb-212-VMI-alpha-NET in select metastatic or inoperable somatostatin receptor positive tumors

Frank I. Lin¹, Jaydira Del Rivero¹, Anish Thomas¹, Ramaprasad Srinivasan¹, Floudas Charalampos¹, Jorge Carrasquillo¹, Inna Shamis¹, Joy Zou¹, Baris Turkbey¹, Esther Mena¹, Liza Lindenberg¹, Clara Chen⁴, Peter Herscovitch⁴, Corina Millo⁴ & Karel Pacak²

<mark>n " , Corina Millo " &</mark> Karel Pa

nd Andrew M. Lowy, MD§

- *NANETS2023 > Trials In Progress (12 abstracts)
- Phase 1/2 trial of Pb-212-VMT-alpha-NET in GI neuroendocrine tumors and pheochromocytoma/paraganglioma previously treated with radioligand therapy

⁻rank I. Lin ¹, Jaydira Del Rivero ¹, Jorge Carrasquillo ¹, Inna Shamis ¹, Joy Zou ¹, Baris Turkbey ¹, Joanna Klubo ², Esther Mena ¹, Liza Lindenberg ¹, Clara Chen ⁴, Peter Herscovitch ⁴, Corina Millo ⁴& Karel Pacak

Internalization **Reliable supply Prospective data Dosimetry** Waste management Recoil **Delivery / Toxicity** Acceptance Long-term follow-up **Chelators & Delivery vehicles**

Availability and Re-imbursement

Timing in Rx landscape

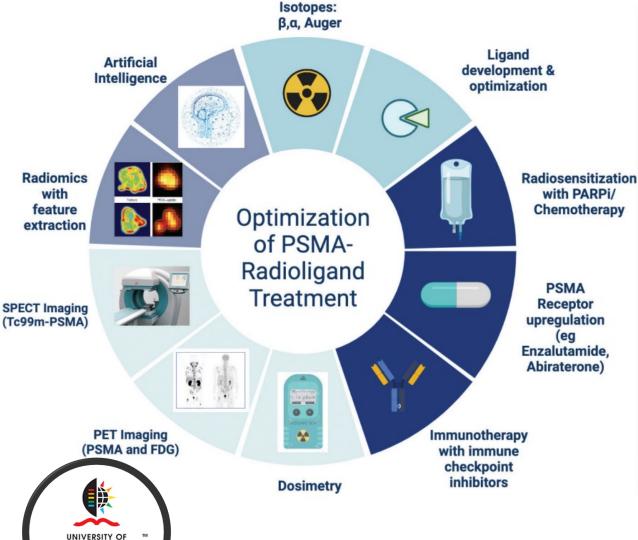
Combination Rx Standardization of protocols

Main challenges with TAT

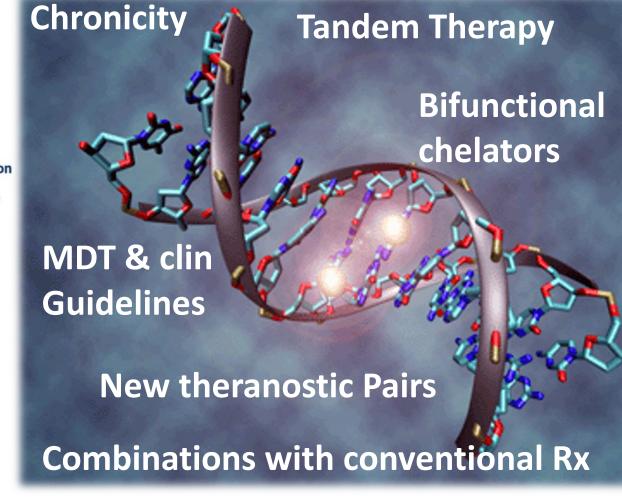
Imaging Partner

Production & Cost

Clinical Guidelines


Preparation

Possibilities & Purpose


Considerations for each isotope

Future Perspectives

KWAZULU-NATAL INYUVESI YAKWAZULU-NATALI

Vorster & Sathekge, 2021 Theranostics in mCRPC

Thank you for your attention!

UNIVERSITY OF KWAZULU-NATAL INYUVESI YAKWAZULU-NATALI

VorsterM1@ukzn/marizavorster@gmail.com