Equivalence and Comparisons for Nuclides of Interest to Medicine

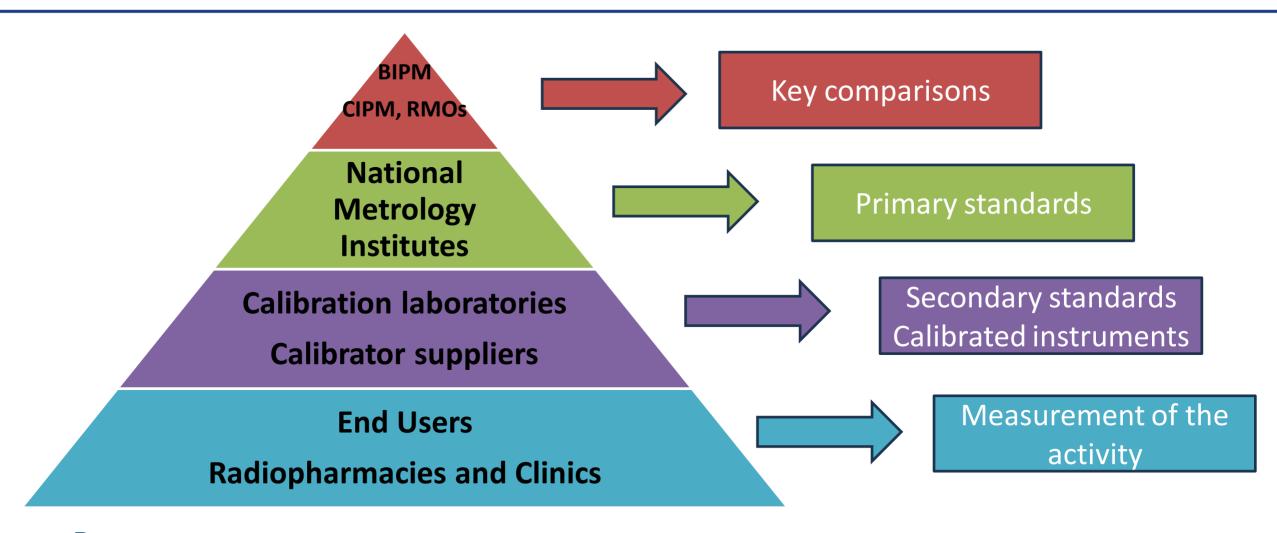
Romain Coulon, Carine Michotte, BIPM

Workshop on Standards and Measurements for Alpha Emitting Nuclides in Therapeutic Nuclear Medicine, 22nd February 2024

Part 1. Context and international equivalence of the Bq

Metrology in nuclear medicine

IMAGING

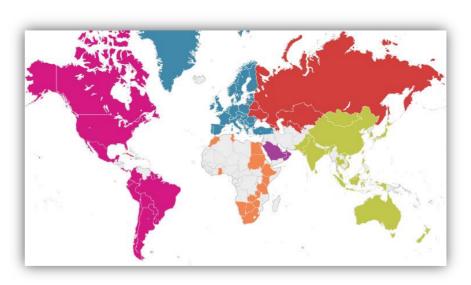

 Qualitative purpose: inject the just necessary activity to the patient to obtain images with enough contrast

TARGETED THERAPY and THERAGNOSTICS

 Quantitative purpose: the activity (Bq) injected to the patient is linked to the delivered dose (Gy)

Increased importance of metrological traceability to the derived SI unit: the becquerel (Bq)

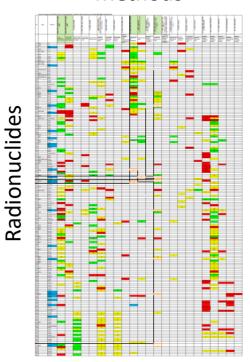
The traceability chain to the SI derived unit, the becquerel (Bq)



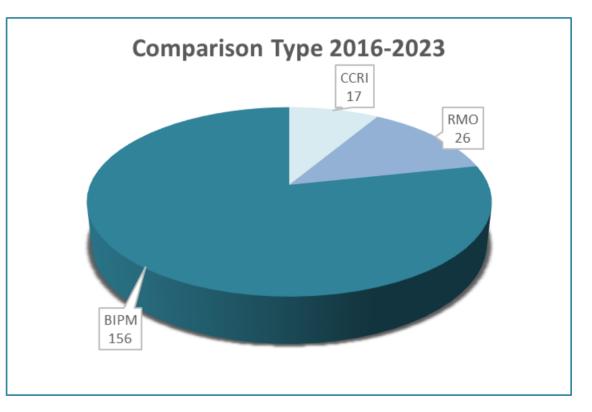
Calibration and Measurement Capabilities (CMCs) and Key Comparisons (KCs)

- ◆ CIPM Mutual Recognition Arrangement (CIPM MRA) 1999
 - ◆ To demonstrate the international equivalence of measurement standards
 - ◆ 250 institutes (97 NMIs, 4 IOs, 149 DIs)
 - Key Comparisons (KCs) is a way to assess the international equivalence of measurement standards
 - Calibration and Measurement Capabilities (CMCs) published by the KCDB

https://www.bipm.org/kcdb/



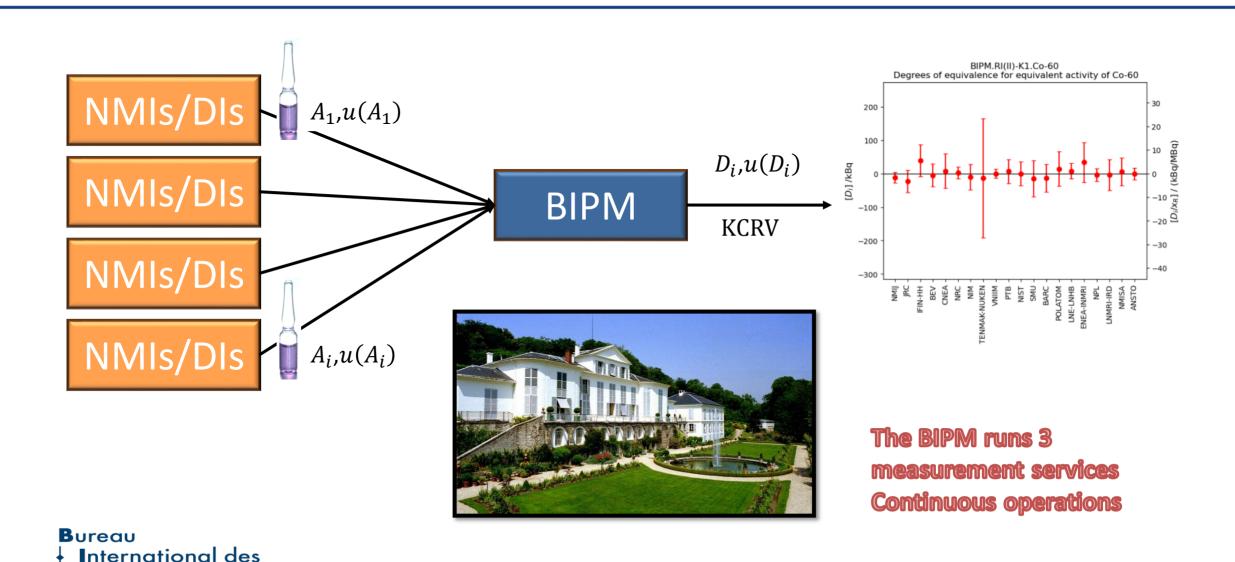
In radionuclide metrology, the support of CMCs by Key Comparison


The Measurement Methods Matrix (MMM)

 allows for a single measurement comparison to support CMCs for several radionuclides using the same primary method with a similar or lower level of difficulty

Methods

- BIPM comparisons (SIR, SIRTI, ESIR)
- RMO comparisons
 - * AFRIMETS, APMP, COOMET, EURAMET, GULFMET, SIM
- CCRI(II) comparisons



www.bipm.org

BIPM "centralized and continuous" key comparisons

Poids et

Mesures

The BIPM services for radionuclide metrology

- 1976, The International System of Reference (SIR) (γ rays emitters)
 - ◆ Ionization chambers + specific approach [Rytz, A. (1978) Env. Int. 1(1-2), 15]
 - 72 radionuclides et 788 independent results

BIPM.RI(II)-K1

The SIR, since 1976

- 2009, The SIRTI (short-lived radionuclides NMIs far from BIPM)
 - Well type NaI(Tl) detector shipment to the laboratory
 - ◆ ^{99m}Tc (6 h), ¹⁸F (2 h), ¹¹C (20 min), ⁶⁴Cu (13 h), ¹²³I (13 h), ¹⁵³Sm (2 j)

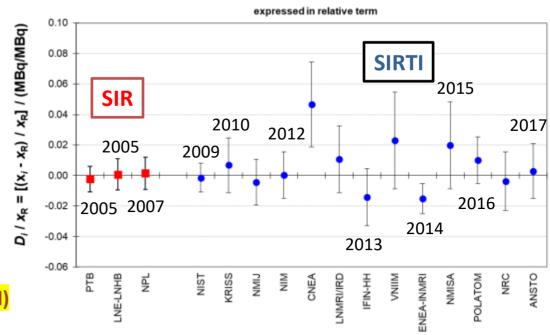
BIPM.RI(II)-K4

- Liquid scintillation counting + TDCR method
- ◆ ¹⁴C, ³⁵S, ⁴⁵Ca, ⁵⁵Fe, ⁶³Ni, ⁸⁹Sr, ⁹⁰Sr, ¹⁴⁷Pm, ⁹⁹Tc, ²⁴¹Am, ²⁴¹Pu

BIPM.RI(II)-K5

The ESIR, in 2024

The SIRTI, since 2009


Part 2. The level of international equivalence of standards for radiopharmaceuticals

www.bipm.org

SPECT radionuclides

- Electron capture decaying radionuclides with γ rays in the range 100 keV 300 keV
 - Primary standardization: x-ray or Auger coincidence/ anticoincidence
 - BIPM services: SIR and SIRTI
- On market drugs
 - ^{99m}Tc (from ⁹⁹Mo, $T_{1/2} < 1$ d):
 - 34 CMCs, 13 DoEs, KCs (1 coming, 5 planned)
 - 201Tl (cardiac scintigraphy):
 - 18 CMCs, 4 DoEs
 - ⁶⁷Ga:
 - 26 CMCs, 3 DoEs, KCs (1 coming, 1 planned)
 - ¹¹¹In (brain):
 - + 20 CMCs, 2 DoEs
 - ¹²³I (nervous sys, thyroid, $T_{1/2} < 1$ d):
 - 15 CMCs, 0 DoEs (deprecated), KCs (4 coming, 2 planned)

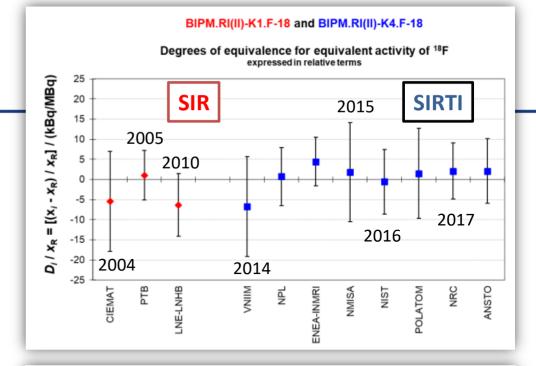
BIPM.RI(II)-K1.Tc-99m and BIPM.RI(II)-K4.Tc-99m Degrees of equivalence for equivalent activity of 99mTc

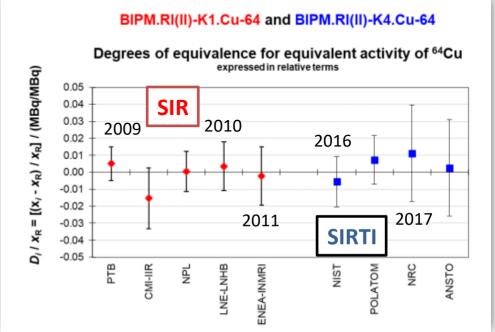
Bureau

International des

Mesures

PET radionuclides


- β^+ decaying radionuclides ($T_{1/2} < 1$ d)
 - Primary standardization: β-y coincidence/ anticoincidence
 - BIPM services: SIR and SIRTI
- On market:
 - ¹⁸F: 19 CMCs, 12 DoEs, KCs (3 coming, 6 planned)
 - ⁶⁴Cu (neuroendocrine tumors, ⁶⁷Cu pairs):
 - + 6 CMCs, 9 DoEs, KCs (2 coming, 3 planned)
 - 11C (prostate): 4 CMCs, 1 KCs (NRC), KCs (2 planned)
 - 68Ga (neuroendocrine tumors, from 68Ge): 7 CMCs, 0 DoE
- Investigate:
 - 124I: 2 CMCs, 0 DoE
 - ¹⁵²Tb (in theranostic pairs with ¹⁶¹Tb or ¹⁴⁹Tb): 0 CMCs, 0
 DoEs
 - 44Sc (in theranostic pairs with ⁴⁷Sc): 0 CMCs, 0 DoEs
 - ⁵²Mn: 2 CMCs, 0 DoEs

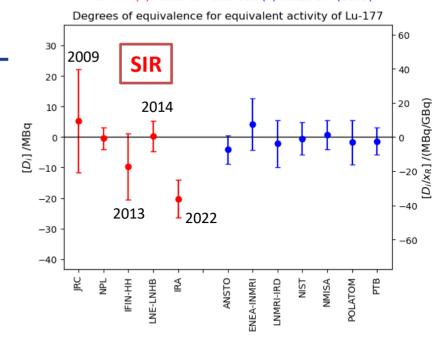

Bureau

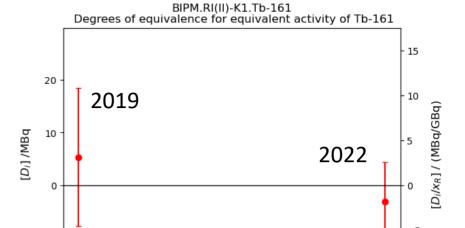
International des

Poids et

Mesures

Theranostics: β therapy + SPECT

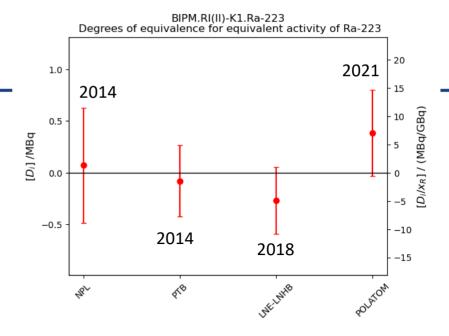

- β- decaying radionuclides
 - Primary standardization: β-γ coincidence/ anticoincidence
 - BIPM services: SIR and SIRTI
- On market
 - 131 (thyroid): 48 CMCs, 18 DoEs
 - 177Lu (neuroendocrine tumors): 8 CMCs, 12 DoEs, KCs (2 coming, 1 planned)
 - ¹⁵³Sm (bone cancer, $T_{1/2}$ < 2 d): 13 CMCs, 0 DoEs (deprecated), KCs:
 - 2 coming with the SIR (PTB, CMI)
 - 1 coming with the SIRTI + 3 planned with the SIRTI
- Investigate:
 - 161Tb (in pair with ¹⁵²Tb): 0 CMCs, 2 DoEs, CCRI(II) K2 planned
 - 111Ag: 0 CMCs, 0 DoE, KCs (1 coming)
 - 47Sc (pair with 44Sc): 2 CMCs, KC results deprecated
 - ⁶⁷Cu (pair with ⁶⁴Cu): 0 CMCs, 0 DoEs
 - 166Ho (bone cancer): 1 CMC, 1 KC result, KCs (2 planned)

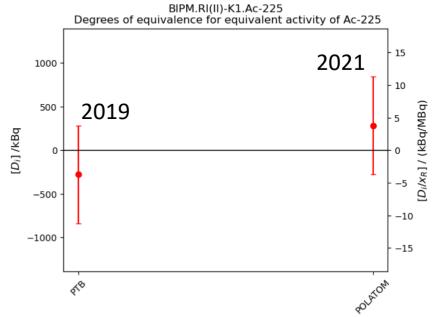

Bureau

International des

Poids et

BIPM.RI(II)-K1.Lu-177 and CCRI(II)-K2.Lu-177(2009)




-10

Theranostics: α therapy + SPECT or PET

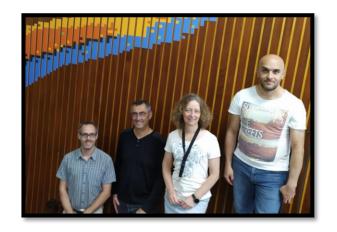
- α decaying radionuclides
 - Primary standardization: Liquid scintillation counting, C/N, TDCR, $4\pi(LS)\alpha$ -ν
 - BIPM services: SIR and SIRTI, (ESIR)
- On market
 - 223Ra (bone metastasis): 0 CMCs, 4 DoEs, KC (1 planned)
- Investigate
 - ²²⁵Ac (Myeloid Malignancies): 0 CMCs, 2 DoEs, KCs (1 coming + 1 planned + CCRI(II) K2 planned)
 - 227Th: 0 CMCs, KC (1 planned)
 - Standardization of ²²⁷Th: Collins, S. (2019) ARI 145 240-250
 - 211At: 0 CMCs, 0 DoE
 - 212Bi (in 212Pb chain): 0 CMCs, 0 DoE
 - ²¹³Bi (in ²²⁵Ac chain): 0 CMCs, 0 DoE
 - ¹⁴⁹Tb (PET, pair with ¹⁵²Tb): 0 CMCs, 0 DoE

Bureau International des Poids et Mesures

Auger and β therapy

- Ec or β decaying radionuclides
 - Primary standardization: Liquid scintillation counting, C/N, TDCR
 - BIPM services: ESIR
- On market
 - 90Y (from 90Sr, hepatic cancer): 66 CMCs, 0 DoE, (ESIR open)
 - 89Sr (bone cancer): 80 CMCs, 0 DoE, (ESIR open)
- Investigate
 - ³²P: 34 CMCs, 0 DoE, (ESIR open)
 - ¹⁶⁹Er: 0 CMCs, 0 DoE
 - Standardization of ¹⁶⁹Er: Talip, Z. (2021) ARI 176 109823
 - ¹³⁵La ($T_{1/2}$ < 2 d): 0 CMCs, 0 DoE
 - ¹⁶⁵Er (from ¹⁶⁵Tm, $T_{1/2}$ < 2 d): 0 CMCs, 0 DoE

BIPM.RI(II)-K5 comparison opened for 89Sr, 90Y, 32P


Conclusion

- ◆ The traceability of nuclides of interest to medicine is well supported by Key Comparisons
- Notably through the support of BIPM measurement services,
 - The SIR and the SIRTI provide an active support to
 - The on-market SPECT nuclides: 99mTc, 201Tl, 67Ga, 111In
 - ◆ The on-market PET nuclides: ¹⁸F, ⁶⁴Cu
 - The SIRTI will soon produce equivalence for ¹²³I (SPECT) and ¹¹C (PET)
 - The SIR provides an active support to theragnostic nuclides:
 - β therapy + SPECT: ¹³¹I, ¹⁷⁷Lu, ¹⁶¹Tb
 - α therapy + SPECT: ²²³Ra, ²²⁵Ac
 - The SIR/SIRTI will soon produce equivalence for ¹⁵³Sm (β therapy + SPECT)
 - The new ESIR is ready to evaluate equivalence of β therapy nuclides: ⁸⁹Sr, ⁹⁰Y and ³²P

Thank you for your attention.

17:30 – Laboratory tour

Bureau
International des
Poids et
Mesures

SPECT only radionuclides

Rad.	Decay	T _{1/2}	BIPM Service	CMC s	
^{99m} Tc	I.T. / γ (141 keV)	6 h	SIR **** SIRTI ***********************************	34	From ⁹⁹ Mo
⁶⁷ Ga	ϵ / γ (93, 185 et 300 keV)	3.3 d	SIR ********* c	26	
¹⁶⁹ Yb	ε/γ (63 et 198 keV)	32 d	SIR *******	24	
¹¹¹ In	ε/γ (171 et 245 keV)	2.8 d	SIR ********	20	
²⁰¹ TI	ε/γ (167 keV)	3.0 d	SIR *********	18	
¹²³	ε/γ (159 keV)	13.2 h	SIR ***** c SIRTI ****	15	
¹⁵⁵ Tb	ε / γ (45, 87, 105 keV)	5.3 d	-	0	Part of the Tb theranostic quadruplet

« * » outdated
« * » valid
« * » on going
« * » planned

PET only radionuclides

Rad.	Decay	T _{1/2}	BIPM Service	CMCs	
¹⁸ F	β+/γ (511keV)	1.8 h	SIR ***** SIRTI ************	19	
⁶⁴ Cu	β+,β-/γ (511keV)	12.7 h	SIR ****** SIRTI *******	6	
¹¹ C	β+/γ (511keV)	20.3 min	SIRTI ***	4	
124	β+/γ (511 – 603 keV)	4.2 d	SIRTI **	2	
⁶⁸ Ga	β+/γ (511 keV)	68 min	-	7	From ⁶⁸ Ge
⁵² Mn	β+/γ (511 keV)	5.6 d	-	2	
¹⁵² Tb	β+/γ (511 – 344 keV)	17.5 h	-	0	In theranostic pairs with ¹⁶¹ Tb or ¹⁴⁹ Tb
⁴⁴ Sc	β+/γ (511 – 1157 keV)	4.0 h	-	0	In theranostic pairs with ⁴⁷ Sc

« * » outdated
« * » valid
« * » on going
« * » planned

β therapy + SPECT

ı	Rad.	Decay	T _{1/2}	BIPM Service	CMCs	
1	131	β ⁻ /γ (364 keV)	8.0 d	SIR ************************************	48	environment
1	¹⁵³ Sm	β ⁻ /γ (103 keV)	1.9 d	SIR **** ** c SIRTI * ***	13	
1	¹⁷⁷ Lu	β ⁻ /γ (208 keV)	6.6 d	SIR ** ****** ** * c	8	
4	⁴⁷ Sc	β ⁻ /γ (160 keV)	3.4 d	SIR ***	2	In pairs with 44Sc (PET)
1	¹⁶¹ Tb	β ⁻ /γ (48, 75 keV)	6.9 d	SIR ** c	0	In pairs with ¹⁵² Tb (PET)
1	¹⁶⁶ Ho	β ⁻ /γ (1379 keV)	26.8 h	SIR * c	1	
1	¹¹¹ Ag	β ⁻ /γ (342 keV)	7.5 d	SIR * c	0	
6	⁶⁷ Cu	β ⁻ /γ (184 keV)	2.6 d	-	0	In pairs with 64Cu (PET)
1	¹⁹⁹ Au	β ⁻ /γ (158 keV)	3.1 d	-	0	« * » outdated « * » valid
rr	¹⁷⁵ Yb nationa ds et	β ⁻ /γ (396, 283 keV) al des	4.2 d	-	0	« * » on going « * » planned

19

α therapy + SPECT or PET

« * » outdated

« * » valid

« * » on going

« * » planned

α therapy + SPECT

Rad.		Decay	T _{1/2}	BIPM Service	CMCs	
²²³ Ra	α therapy + SPECT	α (MeV) / γ (81-98, 269, 351 keV)	11.4 d	SIR **** * c	0	²¹⁹ Rn, ²¹⁵ Po, ²¹¹ Pb, ²¹¹ Bi, ²⁰⁷ Tl
²²⁵ Ac	α therapy + SPECT	α (6,88 MeV) / γ (100, 218, 441 keV)	9.9 d	SIR ** * * c	0	²²¹ Fr, ²¹⁷ At, ²¹³ Bi, ²¹³ Po, ²⁰⁹ Pb
²²⁷ Th	α therapy + SPECT	α (MeV) / γ (81-98, 236, 269, 351 keV)	18.7 d	* c	0	²²³ Ra, ²¹⁹ Rn, ²¹⁵ Po, ²¹¹ Pb, ²¹¹ Bi, ²⁰⁷ Tl
²¹¹ At	α therapy + SPECT	α (6.8 MeV) / X (78 keV)	7.2 h	-	0	
²¹³ Bi	α therapy + SPECT	α (8.2 MeV) / γ (441 keV)	0.76 h	-	0	213Po -> 209Pb (3.2 h)

α therapy + PET

Rad.		Decay	T _{1/2}	BIPM Service	CMCs	
¹⁴⁹ Tb	α therapy + PET	α (3.9 MeV) β ⁺ / γ (165, 352, 551 keV)	4.8 h	-	0	In pairs with ¹⁵² Tb (PET)

β therapy

Rad.	Decay	T _{1/2}	BIPM Service	CMCs	
⁸⁹ Sr	β ⁻ (1495 keV)	51 d	CCRI(II) **************	80	
90 Y	β- (2279 keV)	2.7 d	-	66	From ⁹⁰ Sr, environment
³² P	β ⁻ (1711 keV)	14.3 d	-	34	environement
¹⁶⁹ Er	β ⁻ (353 keV)	9.4 d	-	1	In pairs with 165Er

Auger therapy + SPECT

F	Rad.	Decay	T _{1/2}	BIPM Service	CMCs	
1	³⁵ La	ε / x (37 keV) e _A (5 keV)	18.9 h	-	0	
1	⁶⁵ Er	ε / x (47 keV)	10.4 h	-	0	From ¹⁶⁵ Tm

BIPM services:

The SIRTI, the ESIR, the ESIRTI

« * » outdated
« * » valid
« * » on going
« * » planned