

Dr Martin Milton

The BIPM - Bureau international des poids et mesures

The Metre Convention was signed in Paris by 17 nations on 20 May 1875 "to assure the international unification and perfection of the metric system"

Official representatives of Member States

CIPM – Comité international des poids et mesures

14 then 18 members all from different nationalities and elected by the CGPM.

Headquarters (Scientific and technical secretariat, Sèvres, France)

<u>1875</u>

17 Member States

14 CIPM Members

Director + 2 Assistants

2022

64 Member States

18 CIPM Members

Director + 70 staff

The BIPM

... is the intergovernmental organization established by the Metre Convention in 1875, through which Member States act together on matters related to measurement science and measurement standards

Members and Associates (May 2023)

- -64 Member States* and
- -36 Associates of the CGPM

(States and Economies)

* The official term is "States Parties to the Metre Convention"; the term "Member States" is its synonym and used for easy reference.

Members and Associates (May 2023)

- -64 Member States* and
- -36 Associates of the CGPM

(States and Economies)

* The official term is "States Parties to the Metre Convention"; the term "Member States" is its synonym and used for easy reference.

251 Institutes participating in the CIPM MRA

- 97 National Metrology Institutes + 3 Ministries
 - 64 Member States
 - 36 Associates
- 4 International organizations (ESA, IAEA, JRC, WMO)
- plus 150 Designated Institutes

Members and Associates (May 2023)

- -64 Member States* and
- -36 Associates of the CGPM

(States and Economies)

* The official term is "States Parties to the Metre Convention"; the term "Member States" is its synonym and used for easy reference.

251 Institutes participating in the CIPM MRA

- 97 National Metrology Institutes + 3 Ministries
 - 64 Member States
 - 36 Associates
- 4 International organizations (ESA, IAEA, JRC, WMO)
- plus 150 Designated Institutes

The BIPM – main technical roles.

Travelling standards

Maintains travelling standards to compare fixed national references e.g., Josephson Junctions for the volt, Quantum Hall devices for the ohm, etc.

Coordinated Universal Time

Realizes and disseminates Coordinated Universal Time (UTC) based on weighted averages of ~ 500 clocks from over 80 national laboratories world-wide.

kilogram

Ensures metrological traceability of mass measurements based on the new definition of the kilogram in terms of a physical constant.

Coordinate comparisons

Organizes comparisons for physical and chemical quantities world-wide.

Unique world reference facilities

Maintains unique world reference facilities *e.g.*, SIR (ionizing radiation and isotopes), ozone spectrophotometers

Liaison and Coordination

International des
Poids et
Mesures

The BIPM works to foster cooperation with international organizations and promotes the world-wide comparability of measurements.

Comités communs

JCGM

The Joint Statement

"On the digital transformation in the international scientific and quality infrastructure"

Digital Transformation

Joint Statement of Intent On the digital transformation in the international scientific and quality infrastructure

Joint Statement of Intent

On the digital transformation in the international scientific and quality infrastructure

We the undersigned undertake to support in a way appropriate to each organisation the development, implementation, and promotion of the SI Digital Framework as part of a wider digital transformation of the international scientific and quality infrastructure.

A brief history of the SI

The International System of Units (SI)

Prefixes

Base units

The 9th edition of the SI Brochure is available from the BIPM website.

Derived units

Derived quantity	SI coherent derived unit (a)			
	Name	Symbol	Expressed in terms of other SI units	Expressed in terms of SI base units
plane angle	radian (b)	rad	1 (b)	m/m
solid angle	steradian (b)	sr (c)	1 (b)	m^2/m^2
frequency	hertz (d)	Hz		s ⁻¹
force	newton	N		m kg s ⁻²
pressure, stress	pascal	Pa	N/m ²	m ⁻¹ kg s ⁻²
energy, work, amount of heat	joule	J	N m	m ² kg s ⁻²
power, radiant flux	watt	W	J/s	m ² kg s ⁻³
electric charge, amount of electricity	coulomb	С		s A
electric potential difference, electromotive force	volt	V	W/A	m ² kg s ⁻³ A ⁻¹
capacitance	farad	F	C/V	m ⁻² kg ⁻¹ s ⁴ A ²
electric resistance	ohm	Ω	V/A	m2 kg s-3 A-2
electric conductance	siemens	S	A/V	m ⁻² kg ⁻¹ s ³ A ²
magnetic flux	weber	Wb	V s	m2 kg s-2 A-1
magnetic flux density	tesla	T	Wb/m ²	kg s ⁻² A ⁻¹
inductance	henry	H	Wb/A	m2 kg s-2 A-2
Celsius temperature	degree Celsius (e)	°C		K
luminous flux	lumen	lm	cd sr (c)	cd
illuminance	lux	lx	lm/m ²	m ⁻² cd
activity referred to a radionuclide (f)	becquerel (d)	Bq		s ⁻¹
absorbed dose, specific energy (imparted), kerma	gray	Gy	J/kg	m ² s ⁻²
dose equivalent, ambient dose equivalent, directional dose equivalent, personal dose equivalent	sievert (g)	Sv	J/kg	m ² s ⁻²
catalytic activity	katal	kat		s ⁻¹ mol

27th meeting of the

General Conference of Weights and Measures (CGPM) in November 2022

https://www.bipm.org/en/committees/cg/cgpm

Resolution 2

"On the global digital transformation and International System of Units"

Encourages

the CIPM to undertake the development and promotion of an SI Digital Framework, that will include the following features:

- a globally accepted digital representation of the SI, compatible with, and useable within, digital data exchange standards and protocols, whilst maintaining compatibility with existing nondigital solutions.
- facilitating use of digital certificates in the existing robust infrastructure for the world-wide recognition and acceptance of calibration and measurement capabilities.
- the adoption of the FAIR principles (Findable, Accessible, Interoperable, and Reusable) for digital metrological data and metadata, ensuring that other communities recognize the critical importance of metrological traceability for measurement data, the latter being an established requisite for building trust.

the SI Digital Framework

Being developed by the CIPM with three layers:

- **SI core representation**, defined by CIPM: Metadata models and exchange format implementations for basic data elements comprising values, units and uncertainty of a quantity based on the BIPM SI Brochure.
- **Services**, implemented by the NMIs, BIPM and related organizations: Open data formats and software tools and services that build upon the SI core representation. Such services enable data to be ready for analysis, improve data quality and reliability, facilitate life-cycle analysis, communicate that data is fit for purpose, and improve data transparency.
- **3. Applications**, developed and deployed in the broader metrology community and in research disciplines that rely upon the SI: Tools and services can be utilized in domain-specific applications, including sophisticated analysis and AI/ML methods, and, through layering on the SI core representation, assure reliability and traceability.

The CIPM Vision for

"Transforming the International System of Units for a Digital World"

Vision for SI Digital Framework

- the network of tools, services, and applications that instantiate the Digital SI
- assures that measurements are FAIR, machine-readable, machine-actionable, and support digital metrological traceability.

The **SI Digital Framework** is coordinated by CIPM and consists broadly of three layers:

SI core representation and core data services

defined by CIPM and implemented by the BIPM: Metadata models and digital references for measurement data elements, including values, units, types of quantities, uncertainty, and metrological traceability.

Data services

provided by the NMIs and related organizations: Open data formats, software tools, and services that build upon the SI core representation and core data services. Such services enable data to be ready for analysis, improve data quality and reliability, facilitate life-cycle analysis, communicate that data is fit for purpose, and improve data transparency.

Applications

developed and deployed in the broader metrology community and in research disciplines that rely upon the SI: Tools and services can be utilized in domain-specific applications, including sophisticated analysis and AI/ML methods, and, through layering on the SI core representation, assure reliability and metrological traceability.

- Provide the globally accepted anchor of trust for metrology in the digital era
- Facilitate the use of digital certificates and the adoption of the FAIR principles

- Provide the globally accepted anchor of trust for metrology in the digital era
- Facilitate the use of digital certificates and the adoption of the FAIR principles

From NIST -http://physics.nist.gov/cuu/Units/SIdiagram.html

- Provide the globally accepted anchor of trust for metrology in the digital era
- Facilitate the use of digital certificates and the adoption of the FAIR principles

- Provide the globally accepted anchor of trust for metrology in the digital era
- Facilitate the use of digital certificates and the adoption of the FAIR principles

- Provide the globally accepted anchor of trust for metrology in the digital era
- Facilitate the use of digital certificates and the adoption of the FAIR principles

What are digital references?

- A persistent identifier (PI or PID) is a long-lasting reference to a document, file, web page, or other object.
- > you can plug it into a web browser and be taken to the identified source.

Barcodes

eg DOIs

Citation S M Judge *et al* 2023 *Metrologia* **60** 012001 **DOI** 10.1088/1681-7575/aca67a

10.1088/1681-7575/aca67a

QR codes

eg ORCID iDs

- To provide the globally accepted anchor of trust for metrology in the digital era
- Facilitate the use of digital certificates and the adoption of the FAIR principles

Digital access to BIPM databases

- Key Comparison Database
- UTC database

BIPM digital service

• SI Reference Point

- To provide the globally accepted anchor of trust for metrology in the digital era
- Facilitate the use of digital certificates and the adoption of the FAIR principles

Digital access to BIPM databases

- Key Comparison Database
- UTC database

BIPM digital service

• SI Reference Point

BIPM digital references

Available for beta testing

- Units
- Prefixes
- Defining constants
- Quantities used in the SI Brochure
- Decisions
- CMCs
- Measurement service categories
 - for Physics (exc RI)

- To provide the globally accepted anchor of trust for metrology in the digital era
- Facilitate the use of digital certificates and the adoption of the FAIR principles

Digital access to BIPM databases

- Key Comparison Database
- UTC database

BIPM digital service

• SI Reference Point

digital references

(v1.0) Available for beta testing

- Units
- Prefixes
- Defining constants
- Quantities used in the SI Brochure
- Decisions
- CMCs
- Measurement service categories
 - for Physics (exc RI)

(v2.0) Under development

- Measurement service categories
 - for RI and chemistry
- NMIs/DIs
- Quantities used in the KCDB
- Fundamental constants
- ...

- To provide the globally accepted anchor of trust for metrology in the digital era
- Facilitate the use of digital certificates and the adoption of the FAIR principles

Digital access to BIPM databases

- Key Comparison Database
- UTC database

BIPM digital service

• SI Reference Point

External digital references

- ROR
- ORCID
- InChl

Under development

• Unit interoperability service

digital references

(v1.0) Available for beta testing

- Units
- Prefixes
- Defining constants
- Quantities used in the SI Brochure
- Decisions
- CMCs
- Measurement service categories
 - for Physics (exc RI)

(v2.0) Under development

- Measurement service categories
 - for RI and chemistry
- NMIs/DIs
- Quantities used in the KCDB
- Fundamental constants
- •

The SI Reference Point

Machine-interpretable reference for the International System of Units

Motivation

- provide trusted knowledge bases to describe metrological information
- prepare existing documents for L3+

L0: analog *document*

Building blocks of the semantic web

addition of formal logic to the web

integration with existing standards

available collections of information

- express data and rules
- reason about content
- describe and express complex properties
- remain decidable
- build on accepted tools
- use (hidden) annotations in XML
- describe meaning and relations with RDF
- identify concepts globally using a URI
- capture domain specific knowledge
- ontologies define concepts and relations
- interrelate concepts between ontologies

The principal pillars

- SI units
- SI prefixes
- Defining constants
- Selected quantities
- Decisions concerning the SI

Information encoded in knowledge graphs (serialized as TTL / JSON-LD) Usable by both humans and machines.

Contructing units from expressions

Unit Equation: $N = kg m / s^2$

Turtle Syntax:

```
units:newton a si:SISpecialNamedUnit;
 si:hasDefiningResolutioncgpm:CGPM9-Res7;
 si:hasSymbol "N"^^xsd:string;
 si:hasUnitTypeAsString "Named SI derived unit"@en,
   "Unité SI dérivée ayant un nom spécial"@fr:
 si:inBaseSIUnits [ a si:UnitProduct :
     si:hasLeftUnitTerm units:kilogram;
     si:hasRightUnitTerm [ a si:UnitProduct :
         si:hasLeftUnitTerm units:metre:
         si:hasRightUnitTerm [ a si:UnitPower;
            si:hasNumericExponent "-2"^^xsd:short;
            si:hasUnitBase units:second 111;
 si:isUnitOfQtyKind quantities:FORC;
 si:prefixRestriction false;
 skos:prefLabel "newton"@en,
   "newton"@fr.
```

Implied Graph (excerpt):

How to link data to units?

Links and thanks

- https://si-digital-framework.org/ : the root URI and web endpoint
- https://github.com/TheBIPM/SI Digital Framework : public github repository where files and documentation are available, and issues can be raised.
- Current version: 1.0beta, comments and feedback welcome.

Thanks to

Janet Miles (BIPM), A. Ben Abdallah (web dev), S. Chalk (UNF), G. Dudle (METAS, now OST), M. Gruber (PTB), J.-L. Hippolyte (NPL), F. Meynadier (BIPM)

Quick Start: CMC Identifiers

Published on the KCDB Help page.

The SI Digital Framework – next steps

- To provide the globally accepted anchor of trust for metrology in the digital era
- Facilitate the use of digital certificates and the adoption of the FAIR principles

BIPM online databases

- Key Comparison Database
- UTC database

BIPM digital service

• SI Reference Point

External digital references

- ROR
- ORCID
- InChl

Under development

• Unit interoperability service

digital references

Available for beta testing

- Units
- Prefixes
- Defining constants
- Quantities used in the SI Brochure
- Decisions
- CMCs
- Measurement service categories
 - for Physics (exc RI)

Under development

- Measurement service categories
 - for RI and chemistry
- NMIs/DIs
- Quantities used in the KCDB
- Fundamental constants
- •

The SI Digital Framework – actions by the Consultative Committees

The SI-digital framework provides the basis for new Digital Transformation actions in the CCs. Examples:

CCTF demonstration API to allow UTC labs to access Time Dept database directly

CCRI digital comparison report formats

CCL/CCTF database for wavelength and frequency standards for the Mise en Pratique of

the meter and the second with API access

CCQM FAIR data workshop

. .

. .

At the BIPM we are -

- supporting open data practices by providing digital reference points and machine-accessible data,
- providing the anchor of trust for metrology data.

The development of the SI Digital Framework has been a collaborative effort.

Many thanks to:

- NMI Partners (PTB, NIST, NPL, METAS)
- QI partners collaborating on the SI Reference Point

Bureau
International des
Poids et
Mesures

"thank you"

