TG14 Discussion Forum on Radiometry to Support Gravitational Wave Detection

John Lehman Matt Spidell, Stefan Kück, Marco Lopez, Rick Savage

1. If we get power wrong, we get GW distance wrong

2. If we disagree, we get GW location wrong

get the Hubble constant wrong

3. If we agree and we're wrong, we

Boulder GW Workshop, March 2019

beam splitter

Ζ

X

photodiode

image credit: LIGO

PCAL Sensor

- InGaAs Photodiode
- ø100 mm diameter integrating sphere with an aluminum outer shell
- sintered PTFE inner shell
- ø25 mm diameter entrance aperture
- ø12.7 mm diameter detector port

Not really 1 W: 300 mW, sinusoidal in practice.

Update

- NIST-PTB bilateral study, 2022-2023
 - Calculation of consensus responsivity and bilateral DoE
 - NEWRAD conference in September 2023
 - Potential publication
- Implementation of the calibration subway map
- Discussions have begun with respect to including VIRGO and eventually KAGRA

LIGO-G2301163

NIST-PTB bilateral comparison, GW detectors calibration plan

NIST, PTB, LIGO Hanford 06/13/2023

LIGO-G2301163

Bilateral results

LIGO-G2301163

Previous bilateral comparison M. Slidell, et al., Metrologia **58** (2021) 055011

100 mW: DoE = -0.07% U (k=2)= 0.91 % 300mW : DoE = -0.23% U (k=2)= 0.91 %

Composite: DoE= -0.15% U (k=2) = 0.87 %

NEWRAD, 2023

Abstract has been accepted for oral presentation

Calibrating the global network of gravitational wave observatories via laser power calibration at NIST and PTB.

D. Bhattacharjee¹, R. L. Savage², S. Karki³, A. Sanchez², F. Llamas⁴, J. Betzwieser⁵, J. Lehman⁶, M. Spidell⁶, M. Stephens⁶, S. Kück⁷, H. Lecher⁷, M. López⁷, L. Rolland⁸, P. Lagabbe⁸, D. Chen⁹, R. Bajpai⁹, and S. Fujii¹⁰

¹Kenyon College, Gambier, USA, ²LIGO Hanford Observatory, Richland, USA, ³Missouri University of Science and Technology, Rolla, USA, ⁴University of Texas Rio Grande Valley, Brownsville, USA, ⁵LIGO Livingston Observatory, Livingston, USA, ⁶National Institute of Standards and Technology, Boulder, USA, ⁷Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany, ⁸Laboratoire d'Annecy de Physique des Particules, Annecy, France, ⁹National Astronomical Observatory of Japan, Mitaka, Japan, ¹⁰Institute for Cosmic Ray Research, Kashiwa, Japan *Corresponding e-mail address: bhattacharjee1@kenyon.edu*

DCC link: https://dcc.ligo.org/LIGO-G2300653/public

Both transfer standards currently at LIGO Hanford

LIGO-G2301163