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Foreword

In 1997 a Joint Committee for Guides in Metrology (JCGM), chaired by the Director of the BIPM, was created
by the seven international organizations that had originally in 1993 prepared the ‘Guide to the expression of
uncertainty in measurement’ (GUM) and the ‘International vocabulary of metrology – basic and general concepts
and associated terms’ (VIM). The JCGM assumed responsibility for these two documents from the ISO Technical
Advisory Group 4 (TAG4).

The Joint Committee is formed by the BIPM with the International Electrotechnical Commission (IEC), the
International Federation of Clinical Chemistry and Laboratory Medicine (IFCC), the International Laboratory
Accreditation Cooperation (ILAC), the International Organization for Standardization (ISO), the International
Union of Pure and Applied Chemistry (IUPAC), the International Union of Pure and Applied Physics (IUPAP),
and the International Organization of Legal Metrology (OIML).

JCGM has two Working Groups. Working Group 1, ‘Expression of uncertainty in measurement’, has the task
to promote the use of the GUM and to prepare Supplements and other documents for its broad application.
Working Group 2, ‘Working Group on International vocabulary of basic and general terms in metrology (VIM)’,
has the task to revise and promote the use of the VIM. For further information on the activity of the JCGM,
see www.bipm.org.

The present document has been prepared by Working Group 1 of the JCGM, and has benefited from detailed
reviews undertaken by member organizations of the JCGM.

This document constitutes one part in a series of JCGM documents under the generic heading Evaluation of
measurement data. The parts in the series are

— JCGM 100:2008. Evaluation of measurement data — Guide to the expression of uncertainty in measurement
(GUM) (see clause 2),

— JCGM 101:2008. Evaluation of measurement data – Supplement 1 to the “Guide to the expression of
uncertainty in measurement” – Propagation of distributions using a Monte Carlo method (see clause 2),

— JCGM 102. Evaluation of measurement data – Supplement 2 to the “Guide to the expression of uncertainty
in measurement” – Models with any number of output quantities,

— JCGM 103. Evaluation of measurement data – Supplement 3 to the “Guide to the expression of uncertainty
in measurement” – Modelling,

— JCGM 104. Evaluation of measurement data – An introduction to the “Guide to the expression of uncer-
tainty in measurement” and related documents [this document],

— JCGM 105. Evaluation of measurement data – Concepts and basic principles,

— JCGM 106. Evaluation of measurement data – The role of measurement uncertainty in conformity assess-
ment, and

— JCGM 107. Evaluation of measurement data – Applications of the least-squares method.

c© JCGM 2009— All rights reserved v
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Introduction

A statement of measurement uncertainty is indispensable in judging the fitness for purpose of a measured
quantity value. At the greengrocery store the customer would be content if, when buying a kilogram of fruit,
the scales gave a value within, say, 2 grams of the fruit’s actual weight. However, the dimensions of components
of the gyroscopes within the inertial navigation systems of commercial aircraft are checked by measurement to
parts in a million for correct functioning.

Measurement uncertainty is a general concept associated with any measurement and can be used in professional
decision processes as well as judging attributes in many domains, both theoretical and experimental. As
the tolerances applied in industrial production become more demanding, the role of measurement uncertainty
becomes more important when assessing conformity to these tolerances. Measurement uncertainty plays a
central role in quality assessment and quality standards.

Measurement is present in almost every human activity, including but not limited to industrial, commercial,
scientific, healthcare, safety and environmental. Measurement helps the decision process in all these activities.
Measurement uncertainty enables users of a measured quantity value to make comparisons, in the context of
conformity assessment, to obtain the probability of making an incorrect decision based on the measurement,
and to manage the consequential risks.

This document serves as an introduction to measurement uncertainty, the GUM and the related documents
indicated in the Foreword. A probabilistic basis for uncertainty evaluation is used. Annex A gives acronyms
and initialisms used in this document.

In future editions of JCGM 200 (VIM) it is intended to make a clear distinction between the use of the term
error as a quantity and as a quantity value. The same statement applies to the term indication. In the current
document such a distinction is made. JCGM 200:2008 does not distinguish explicitly between these uses.

vi c© JCGM 2009— All rights reserved
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Evaluation of measurement data — An introduction to
the ‘Guide to the expression of uncertainty in
measurement’ and related documents

1 Scope

The Joint Committee for Guides in Metrology (JCGM) has prepared this document to promote the sound
evaluation of measurement uncertainty through the use of the GUM (see clause 2) and to provide an introduc-
tion to the GUM Supplements and other documents JCGM is producing: JCGM 101:2008 (see clause 2) and
references [3, 4, 5, 6, 7].

As in the GUM, this document is primarily concerned with the expression of uncertainty relating to the mea-
surement of a well-defined quantity—the measurand [JCGM 200:2008 (VIM) 2.3]—that can be characterized
by an essentially unique true value [JCGM 200:2008 (VIM) 2.11 NOTE 3]. The GUM provides a rationale for
not using the term ‘true’, but this term will be kept in this document when there is otherwise a possibility for
ambiguity or confusion.

The purpose of the GUM Supplements and the other documents produced by the JCGM is to help with the
interpretation of the GUM and enhance its application. The GUM Supplements and the other documents are
together intended to have a scope that is considerably broader than that of the GUM.

This document introduces measurement uncertainty, the GUM, and the GUM Supplements and other documents
that support the GUM. It is directed predominantly at the measurement of quantities that can be characterized
by continuous variables such as length, temperature, time, and amount of substance.

This introductory document is aimed at the following, including but not limited to

— scientific activities and disciplines in general,

— industrial activities and disciplines in general,

— calibration, testing and inspection laboratories in industry, and laboratories such as those concerned with
health, safety and environment, and

— evaluation and accreditation bodies.

It is hoped that it will also be useful to designers, because a product specification that takes better account of
inspection requirements (and the associated measurement) can result in less stringent manufacturing require-
ments. It is also directed at academia, with the hope that more university departments will include modules on
measurement uncertainty evaluation in their courses. As a result, a new generation of students would be better
armed to understand and provide uncertainty statements associated with measured quantity values, and thus
gain an improved appreciation of measurement.

This introductory document, the GUM, the GUM Supplements and the other documents should be used in con-
junction with the ‘International Vocabulary of Metrology—Basic and general concepts and associated terms’
and all three parts of ISO 3534 cited in clause 2, which define statistical terms (used in statistics and proba-
bility, including applied statistics and design of experiments), and express them in a conceptual framework in
accordance with normative terminology practice. The last consideration relates to the fact that the theoretical
background of evaluation of measurement data and evaluation of the uncertainty of measurement is supported
by mathematical statistics and probability.

c© JCGM 2009— All rights reserved 1
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2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references,
only the edition cited applies. For undated references, the latest edition of the referenced document (including
any amendments) applies.

JCGM 100:2008. Evaluation of measurement data — Guide to the expression of uncertainty in measurement
(GUM). Joint Committee for Guides in Metrology.

JCGM 101:2008. Evaluation of measurement data — Supplement 1 to the “Guide to the expression of
uncertainty in measurement” — Propagation of distributions using a Monte Carlo method. Joint Committee
for Guides in Metrology.

JCGM 200:2008. International Vocabulary of Metrology—Basic and general concepts and associated terms,
3rd Edition. Joint Committee for Guides in Metrology

ISO 3534-1:2006. Statistics – Vocabulary and symbols – Part 1: General statistical terms and terms used in
probability.

ISO 3534-2:2006. Statistics – Vocabulary and symbols – Part 2: Applied statistics.

ISO 3534-3:1999. Statistics – Vocabulary and symbols – Part 3: Design of experiments.

3 What is measurement uncertainty?

3.1 The purpose of measurement is to provide information about a quantity of interest—a measurand
[JCGM 200:2008 (VIM) 2.3]. The measurand might be the volume of a vessel, the potential difference be-
tween the terminals of a battery, or the mass concentration of lead in a flask of water.

3.2 No measurement is exact. When a quantity is measured, the outcome depends on the measur-
ing system [JCGM 200:2008 (VIM) 3.2], the measurement procedure, the skill of the operator, the envi-
ronment, and other effects [1]. Even if the quantity were to be measured several times, in the same way
and in the same circumstances, a different indication value [JCGM 200:2008 (VIM) 4.1] (measured quantity
value [JCGM 200:2008 (VIM) 2.10]) would in general be obtained each time, assuming that the measuring sys-
tem has sufficient resolution to distinguish between the indication values. Such indication values are regarded
as instances of an indication quantity.

3.3 The dispersion of the indication values would relate to how well the measurement is made. Their average
would provide an estimate [ISO 3534-1:2006 1.31] of the true quantity value [JCGM 200:2008 (VIM) 2.11]
that generally would be more reliable than an individual indication value. The dispersion and the number of
indication values would provide information relating to the average value as an estimate of the true quantity
value. However, this information would not generally be adequate.

3.4 The measuring system may provide indication values that are not dispersed about the true quantity
value, but about some value offset from it. The difference between the offset value and the true quantity value
is sometimes called the systematic error value [JCGM 200:2008 (VIM) 2.17]. Take the domestic bathroom
scales. Suppose they are not set to show zero when there is nobody on the scales, but to show some value
offset from zero. Then, no matter how many times the person’s mass were re-measured, the effect of this offset
would be inherently present in the average of the indication values. In general, a systematic error, regarded as a
quantity, is a component of error that remains constant or depends in a specific manner on some other quantity.

3.5 There are two types of measurement error quantity, systematic and random [JCGM 200:2008 (VIM) 2.19].
A systematic error (an estimate of which is known as a measurement bias [JCGM 200:2008 (VIM) 2.18]) is
associated with the fact that a measured quantity value contains an offset. A random error is associated with
the fact that when a measurement is repeated it will generally provide a measured quantity value that is different

2 c© JCGM 2009— All rights reserved
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from the previous value. It is random in that the next measured quantity value cannot be predicted exactly
from previous such values. (If a prediction were possible, allowance for the effect could be made!) In general,
there can be a number of contributions to each type of error.

3.6 A challenge in measurement is how best to express what is learned about the measurand. Expression of
systematic and random error values relating to the measurement, along with a best estimate of the measurand,
is one approach that was often used prior to the introduction of the GUM. The GUM provided a different
way of thinking about measurement, in particular about how to express the perceived quality of the result of a
measurement. Rather than express the result of a measurement by providing a best estimate of the measurand,
along with information about systematic and random error values (in the form of an ‘error analysis’), the GUM
approach is to express the result of a measurement as a best estimate of the measurand, along with an associated
measurement uncertainty.

3.7 One of the basic premises of the GUM approach is that it is possible to characterize the quality of a
measurement by accounting for both systematic and random errors on a comparable footing, and a method is
provided for doing that (see 7.2). This method refines the information previously provided in an ‘error analysis’,
and puts it on a probabilistic basis through the concept of measurement uncertainty.

3.8 Another basic premise of the GUM approach is that it is not possible to state how well the essentially
unique true value of the measurand is known, but only how well it is believed to be known. Measurement
uncertainty can therefore be described as a measure of how well one believes one knows the essentially unique
true value of the measurand. This uncertainty reflects the incomplete knowledge of the measurand. The notion
of ‘belief’ is an important one, since it moves metrology into a realm where results of measurement need to be
considered and quantified in terms of probabilities that express degrees of belief.

3.9 The above discussion concerns the direct measurement of a quantity, which incidentally occurs rarely.
The bathroom scales may convert a measured extension of a spring into an estimate of the measurand, the
mass of the person on the scales. The particular relationship between extension and mass is determined by the
calibration [JCGM 200:2008 (VIM) 2.39] of the scales.

3.10 A relationship such as that in 3.9 constitutes a rule for converting a quantity value into the corresponding
value of the measurand. The rule is usually known as a measurement model [JCGM 200:2008 (VIM) 2.48] or
simply a model. There are many types of measurement in practice and therefore many rules or models. Even
for one particular type of measurement there may well be more than one model. A simple model (for example
a proportional rule, where the mass is proportional to the extension of the spring) might be sufficient for
everyday domestic use. Alternatively, a more sophisticated model of a weighing, involving additional effects
such as air buoyancy, is capable of delivering better results for industrial or scientific purposes. In general there
are often several different quantities, for example temperature, humidity and displacement, that contribute to
the definition of the measurand, and that need to be measured.

3.11 Correction terms should be included in the model when the conditions of measurement are not exactly as
stipulated. These terms correspond to systematic error values [JCGM 200:2008 (VIM) 2.17]. Given an estimate
of a correction term, the relevant quantity should be corrected by this estimate [JCGM 100:2008 (GUM) 3.2.4].
There will be an uncertainty associated with the estimate, even if the estimate is zero, as is often the case.
Instances of systematic errors arise in height measurement, when the alignment of the measuring instrument
is not perfectly vertical, and the ambient temperature is different from that prescribed. Neither the alignment
of the instrument nor the ambient temperature is specified exactly, but information concerning these effects
is available, for example the lack of alignment is at most 0.001◦ and the ambient temperature at the time of
measurement differs from that stipulated by at most 2 ◦C.

3.12 A quantity can depend on time, for instance a radionuclide decaying at a particular rate. Such an effect
should be incorporated into the model to yield a measurand corresponding to a measurement at a given time.

3.13 As well as raw data representing measured quantity values, there is another form of data that is
frequently needed in a model. Some such data relate to quantities representing physical constants, each of
which is known imperfectly. Examples are material constants such as modulus of elasticity and specific heat.
There are often other relevant data given in reference books, calibration certificates, etc., regarded as estimates

c© JCGM 2009— All rights reserved 3
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of further quantities.

3.14 The items required by a model to define a measurand are known as input quantities in a measure-
ment model [JCGM 200:2008 (VIM) 2.50]. The rule or model is often referred to as a functional relation-
ship [JCGM 100:2008 (GUM) 4.1]. The output quantity in a measurement model [JCGM 200:2008 (VIM) 2.51]
is the measurand.

3.15 Formally, the output quantity, denoted by Y , about which information is required, is often re-
lated to input quantities, denoted by X1, . . . , XN , about which information is available, by a measurement
model [JCGM 100:2008 (GUM) 4.1.1] in the form of a measurement function [JCGM 200:2008 (VIM) 2.49]

Y = f(X1, . . . , XN ). (1)

3.16 A general expression for a measurement model [JCGM 200:2008 (VIM) 2.48 note 1] is

h(Y,X1, . . . , XN ) = 0. (2)

It is taken that a procedure exists for calculating Y given X1, . . . , XN in equation (2), and that Y is uniquely
defined by this equation.

3.17 The true values of the input quantities X1, . . . , XN are unknown. In the approach advo-
cated, X1, . . . , XN are characterized by probability distributions [JCGM 100:2008 (GUM) 3.3.5, ISO 3534-1:2006
2.11] and treated mathematically as random variables [ISO 3534-1:2006 2.10]. These distributions describe the
respective probabilities of their true values lying in different intervals, and are assigned based on available
knowledge concerning X1, . . . , XN . Sometimes, some or all of X1, . . . , XN are interrelated and the relevant
distributions, which are known as joint, apply to these quantities taken together. The following considerations,
which largely apply to unrelated (independent) quantities, can be extended to interrelated quantities.

3.18 Consider estimates x1, . . . , xN , respectively, of the input quantities X1, . . . , XN , obtained from certifi-
cates and reports, manufacturers’ specifications, the analysis of measurement data, and so on. The probability
distributions characterizing X1, . . . , XN are chosen such that the estimates x1, . . . , xN , respectively, are the
expectations [JCGM 101:2008 3.6, ISO 3534-1:2006 2.12] of X1, . . . , XN . Moreover, for the ith input quantity,
consider a so-called standard uncertainty [JCGM 200:2008 (VIM) 2.30], given the symbol u(xi), defined as the
standard deviation [JCGM 101:2008 3.8, ISO 3534-1:2006 2.37] of the input quantity Xi. This standard un-
certainty is said to be associated with the (corresponding) estimate xi. The estimate xi is best in the sense
that u2(xi) is smaller than the expected squared difference of Xi from any other value.

3.19 The use of available knowledge to establish a probability distribution to characterize each quantity of
interest applies to the Xi and also to Y . In the latter case, the characterizing probability distribution for Y
is determined by the functional relationship (1) or (2) together with the probability distributions for the Xi.
The determination of the probability distribution for Y from this information is known as the propagation of
distributions [JCGM 101:2008 5.2].

3.20 Prior knowledge about the true value of the output quantity Y can also be considered. For the domestic
bathroom scales, the fact that the person’s mass is positive, and that it is the mass of a person, rather than
that of a motor car, that is being measured, both constitute prior knowledge about the possible values of the
measurand in this example. Such additional information can be used to provide a probability distribution for Y
that can give a smaller standard deviation for Y and hence a smaller standard uncertainty associated with the
estimate of Y [2, 13, 24].

4 Concepts and basic principles

4.1 Further to those in clause 3, fundamental concepts and principles of probability theory that un-
derlie the approach advocated for the evaluation and expression of measurement uncertainty are provided
in JCGM 105:2008 [4].

4 c© JCGM 2009— All rights reserved
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4.2 Measurement uncertainty is defined [JCGM 200:2008 (VIM) 2.26] as

non-negative parameter characterizing the dispersion of the quantity values being attributed to a mea-
surand, based on the information used.

This definition is consistent with the considerations of 3.8 and 3.17 to 3.20.

4.3 Two representations of a probability distribution [JCGM 101:2008 3.1, ISO 3534-1:2006 2.11] for a
random variable X are used in uncertainty evaluation:

— the distribution function [JCGM 101:2008 3.2, ISO 3534-1:2006 2.7], a function giving, for every value of
its argument, the probability that X be less than or equal to that value, and

— the probability density function [JCGM 101:2008 3.3, ISO 3534-1:2006 2.26], the derivative of the distribution
function.

4.4 Knowledge of each input quantity Xi in a measurement model is often summarized by the best estimate xi

and the associated standard uncertainty u(xi) (see 3.18). If, for any i and j, Xi and Xj are related (dependent),
the summarizing information will also include a measure of the strength of this relationship, specified as a
covariance [ISO 3534-1:2006 2.43] or a correlation. If Xi and Xj are unrelated (independent), their covariance
is zero.

4.5 The evaluation of measurement data, in the context of the measurement model (1) or (2), is the use of
available knowledge concerning the input quantities X1, . . . , XN , as represented by the probability distributions
used to characterize them, to deduce the corresponding distribution that characterizes the output quantity Y .
The evaluation of measurement data might entail determining only a summarizing description of the latter
distribution.

4.6 Knowledge about an input quantity Xi is inferred from repeated indication values (Type A eval-
uation of uncertainty) [JCGM 100:2008 (GUM) 4.2, JCGM 200:2008 (VIM) 2.28], or scientific judge-
ment or other information concerning the possible values of the quantity (Type B evaluation of uncer-
tainty) [JCGM 100:2008 (GUM) 4.3, JCGM 200:2008 (VIM) 2.29].

4.7 In Type A evaluations of measurement uncertainty [JCGM 200:2008 (VIM) 2.28], the assumption is often
made that the distribution best describing an input quantity X given repeated indication values of it (obtained
independently) is a Gaussian distribution [ISO 3534-1:2006 2.50]. X then has expectation equal to the average
indication value and standard deviation equal to the standard deviation of the average. When the uncertainty
is evaluated from a small number of indication values (regarded as instances of an indication quantity charac-
terized by a Gaussian distribution), the corresponding distribution can be taken as a t-distribution [ISO 3534-
1:2006 2.53]. Figure 1 shows a Gaussian distribution and (broken curve) a t-distribution with four degrees of
freedom. Other considerations apply when the indication values are not obtained independently.

4.8 For a Type B evaluation of uncertainty [JCGM 200:2008 (VIM) 2.29], often the only available information
is that X lies in a specified interval [a, b]. In such a case, knowledge of the quantity can be characterized by
a rectangular probability distribution [JCGM 100:2008 (GUM) 4.3.7, ISO 3534-1:2006 2.60] with limits a and
b (figure 2). If different information were available, a probability distribution consistent with that information
would be used [26].

4.9 Once the input quantities X1, . . . , XN have been characterized by appropriate probability distributions,
and the measurement model has been developed, the probability distribution for the measurand Y is fully
specified in terms of this information (also see 3.19). In particular, the expectation of Y is used as the estimate
of Y , and the standard deviation of Y as the standard uncertainty associated with this estimate.

4.10 Figure 3 depicts the additive measurement function Y = X1 +X2 in the case where X1 and X2 are each
characterized by a (different) rectangular probability distribution. Y has a symmetric trapezoidal probability
distribution in this case.
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Figure 1 — A Gaussian distribution (continuous black curve) and a t-distribution with four degrees of

freedom (broken red curve) (‘unit’ denotes any unit)

Figure 2 — Rectangular probability distribution with limits −0.1 unit and 0.1 unit (‘unit’ denotes any

unit)
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Figure 3 — An additive measurement function with two input quantities X1 and X2 characterized by

rectangular probability distributions

4.11 Often an interval containing Y with a specified probability is required. Such an interval, a coverage
interval [JCGM 200:2008 (VIM) 2.36], can be deduced from the probability distribution for Y . The specified
probability is known as the coverage probability [JCGM 200:2008 (VIM) 2.37].

4.12 For a given coverage probability, there is more than one coverage interval,

a) the probabilistically symmetric coverage interval [JCGM 101:2008 3.15], for which the probabilities (sum-
ming to one minus the coverage probability) of a value to the left and the right of the interval are equal,
and

b) the shortest coverage interval [JCGM 101:2008 3.16], for which the length is least over all coverage intervals
having the same coverage probability.

4.13 Figure 4 shows a probability distribution (a truncated and scaled Gaussian distribution, indicated
by the decreasing curve) with the endpoints of the shortest (continuous blue vertical lines) and those of the
probabilistically symmetric (broken red vertical lines) 95 % coverage intervals for a quantity characterized by
this distribution. The distribution is asymmetric and the two coverage intervals are different (most notably their
right-hand endpoints). The shortest coverage interval has its left-hand endpoint at zero, the smallest possible
value for the quantity. The probabilistically symmetric coverage interval in this case is 15 % longer than the
shortest coverage interval.

4.14 Sensitivity coefficients c1, . . . , cN [JCGM 100:2008 (GUM) 5.1.3] describe how the estimate y of Y
would be influenced by small changes in the estimates x1, . . . , xN of the input quantities X1, . . . , XN . For
the measurement function (1), ci equals the partial derivative of first order of f with respect to Xi evaluated
at X1 = x1, X2 = x2, etc. For the linear measurement function

Y = c1X1 + · · ·+ cNXN , (3)

with X1, . . . , XN independent, a change in xi equal to u(xi) would give a change ciu(xi) in y. This statement
would generally be approximate for the measurement models (1) and (2) (see 7.2.4). The relative magnitudes of
the terms |ci|u(xi) are useful in assessing the respective contributions from the input quantities to the standard
uncertainty u(y) associated with y.

4.15 The standard uncertainty u(y) associated with the estimate y of the output quantity Y is not given by
the sum of the |ci|u(xi), but these terms combined in quadrature [JCGM 100:2008 (GUM) 5.1.3], namely by
(an expression that is generally approximate for the measurement models (1) and (2))

u2(y) = c2
1u

2(x1) + · · ·+ c2
Nu2(xN ). (4)

4.16 When the input quantities Xi contain dependencies, formula (4) is augmented by terms containing
covariances [JCGM 100:2008 (GUM) 5.2.2], which may increase or decrease u(y).

4.17 According to Resolution 10 of the 22nd CGPM (2003) “ . . . the symbol for the decimal marker shall be
either the point on the line or the comma on the line . . . ”. The JCGM has decided to adopt, in its documents
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Figure 4 — Shortest 95 % coverage interval (endpoints shown by continuous blue vertical lines) and

probabilistically symmetric 95 % coverage interval (broken red) for a quantity characterized by a

truncated and scaled Gaussian distribution (‘unit’ denotes any unit)

in English, the point on the line.

5 Stages of uncertainty evaluation

5.1 The main stages of uncertainty evaluation constitute formulation and calculation, the latter consisting
of propagation and summarizing.

5.2 The formulation stage (see clause 6) constitutes

a) defining the output quantity Y (the measurand),

b) identifying the input quantities on which Y depends,

c) developing a measurement model relating Y to the input quantities, and

d) on the basis of available knowledge, assigning probability distributions — Gaussian, rectangular, etc. — to
the input quantities (or a joint probability distribution to those input quantities that are not independent).

5.3 The calculation stage (see clause 7) consists of propagating the probability distributions for the input
quantities through the measurement model to obtain the probability distribution for the output quantity Y ,
and summarizing by using this distribution to obtain

a) the expectation of Y , taken as an estimate y of Y ,

b) the standard deviation of Y , taken as the standard uncertainty u(y) associated with y
[JCGM 100:2008 (GUM) E.3.2], and

c) a coverage interval containing Y with a specified coverage probability.
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6 The formulation stage: developing a measurement model

6.1 The formulation stage of uncertainty evaluation involves developing a measurement model, incorporat-
ing corrections and other effects as necessary. In some fields of measurement, this stage can be very diffi-
cult. It also involves using available knowledge to characterize the input quantities in the model by proba-
bility distributions. JCGM 103 [6] provides guidance on developing and working with a measurement model.
The assignment of probability distributions to the input quantities in a measurement model is considered
in JCGM 101 [JCGM 101:2008 6] and JCGM 102 [5].

6.2 A measurement model relating the input quantities to the output quantity is initially developed. There
might be more than one output quantity (see 6.5). The model is formed on theoretical or empirical grounds
or both, and generally depends on the metrology discipline, electrical, dimensional, thermal, mass, etc. The
model is then augmented by terms constituting further input quantities, describing effects that influence the
measurement. JCGM 103 [6] provides guidance on handling these additional effects, which may be categorized
into random and systematic effects.

6.3 JCGM 103 considers broader classes of measurement model than does the GUM, categorizing the model
according to whether

a) the quantities involved are real or complex,

b) the measurement model takes the general form (2) or can be expressed as a measurement function (1), and

c) there is a single output quantity or more than one output quantity (see 6.5).

In category (a), complex quantities occur especially in electrical metrology, and also in acoustical and optical
metrology. In category (b), for a measurement function the output quantity is expressed directly as a formula
involving the input quantities, and for a general measurement model an equation is solved for the output
quantity in terms of the input quantities (see 6.5).

6.4 Examples from a range of metrology disciplines illustrate various aspects of JCGM 103. Guidance on
numerical analysis aspects that arise in treating these examples is given. Guidance also includes the use of
changes of variables so that all or some of the resulting quantities are uncorrelated or only weakly correlated.

6.5 The GUM and JCGM 101:2008 concentrate on measurement models in the form of measurement functions
having a single output quantity Y . Many measurement problems arise, however, for which there is more than
one output quantity, depending on a common set of input quantities. These output quantities are denoted
by Y1, . . . , Ym. Instances include (a) an output quantity that is complex, and represented in terms of its
real and imaginary components (or magnitude and phase), (b) quantities representing the parameters of a
calibration function, and (c) quantities describing the geometry of the surface of an artefact. The GUM does
not directly address such models, although examples are given concerning simultaneous resistance and reactance
measurement [JCGM 100:2008 (GUM) H.2] and thermometer calibration [JCGM 100:2008 (GUM) H.3].

6.6 The formulation phase of uncertainty evaluation for the case of more than one measurand is consistent
with that for a measurement model with a single measurand: it comprises developing a model and assigning
probability distributions to the input quantities based on available knowledge. As for a measurement model
with a single output quantity, there is an estimate of each input quantity and a standard uncertainty associ-
ated with that estimate (and possibly covariances associated with pairs of estimates). Furthermore, since in
general each output quantity depends on all the input quantities, in addition to determining estimates of these
output quantities and the standard uncertainties associated with these estimates, it is required to evaluate the
covariances associated with all pairs of these estimates.

6.7 The counterpart of the measurement function (1) for a number m of output quantities is

Y1 = f1(X1, . . . , XN ), Y2 = f2(X1, . . . , XN ), . . . , Ym = fm(X1, . . . , XN ), (5)

in which there are m functions f1, . . . , fm. Figure 5 illustrates such a measurement function.
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X1
-

X2
-

X3
-

Y1 = f1(X1, X2, X3)

Y2 = f2(X1, X2, X3)

- Y1

- Y2

Figure 5 — A measurement function with three input quantities X1, X2 and X3, and two output

quantities Y1 and Y2

6.8 Multistage measurement models, where the output quantities from previous stages become the input
quantities to subsequent stages, are also treated in JCGM 103. A common example of a multistage measurement
model relates to the construction and use of a calibration function [JCGM 200:2008 (VIM) 2.39] (see figure 6):

a) Given quantity values provided by measurement standards, and corresponding indication values provided
by a measuring system, determine estimates of the parameters of the calibration function. The standard
uncertainties associated with the measured quantity values and the indication values give rise to standard
uncertainties associated with these estimates and in general with covariances associated with all pairs of
these estimates;

b) Given a further indication value, evaluate the calibration function to provide the corresponding measured
quantity value. This step involves the inverse of the calibration function. The standard uncertainties
and covariances associated with the estimates of the parameters of the calibration function, together with
the standard uncertainty associated with the further indication value, give rise to a standard uncertainty
associated with this measured quantity value.

quantity values provided by measurement

standards and corresponding indication values

?
estimates of parameters

of calibration function

?

further

indication value

estimate of measured quantity value

corresponding to further indication value

Figure 6 — A two-stage measurement model for a calibration function in which quantity values

provided by measurement standards and corresponding indication values are used to establish

estimates of the parameters of the calibration function, which, given a further indication value, are

used to estimate the corresponding measured quantity value

7 The calculation (propagation and summarizing) stage of uncertainty evaluation

7.1 General

7.1.1 The propagation stage of uncertainty evaluation is known as the propagation of distribu-
tions [JCGM 101:2008 5.2], various approaches for which are available, including

a) the GUM uncertainty framework, constituting the application of the law of propagation of uncertainty, and
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the characterization of the output quantity Y by a Gaussian or a t-distribution (see 7.2),

b) analytic methods, in which mathematical analysis is used to derive an algebraic form for the probability
distribution for Y (see 7.3), and

c) a Monte Carlo method (MCM), in which an approximation to the distribution function for Y is established
numerically by making random draws from the probability distributions for the input quantities, and
evaluating the model at the resulting values (see 7.4).

7.1.2 For any particular uncertainty evaluation problem, approach a), b) or c) (or some other approach) is
used, a) being generally approximate, b) exact, and c) providing a solution with a numerical accuracy that can
be controlled.

7.1.3 The application of approaches a) and c) to measurement functions with any number of output quan-
tities, and general measurement models, is considered in 7.5.

7.2 The GUM uncertainty framework

7.2.1 The GUM uncertainty framework [JCGM 100:2008 (GUM) 3.4.8, 5.1] (depicted in figure 7) uses

a) the best estimates xi of the input quantities Xi,

b) the standard uncertainties u(xi) associated with the xi, and

c) the sensitivity coefficients ci (see 4.14)

to form an estimate y of the output quantity Y and the associated standard uncertainty u(y).

7.2.2 A variant [JCGM 100:2008 (GUM) 5.2] of 7.2.1 applies when the input quantities are mutually depen-
dent (not indicated in figure 7). By regarding the probability distribution for Y as Gaussian, a coverage interval
for Y corresponding to a specified coverage probability is also determined [JCGM 100:2008 (GUM) G.2]. When
the degrees of freedom [ISO 3534-1:2006 2.54] relating to any u(xi) is finite, an (effective) degrees of freedom
relating to u(y) is determined, and the probability distribution for Y taken as a t-distribution.

7.2.3 There are many circumstances where the GUM uncertainty framework [JCGM 100:2008 (GUM) 5]
can be applied and leads to valid statements of uncertainty. If the measurement function is linear in the input
quantities and the probability distributions for these quantities are Gaussian, the GUM uncertainty framework
provides exact results [JCGM 101:2008 5.7]. Even when these conditions do not hold, the approach can often
work sufficiently well for practical purposes [JCGM 101:2008 5.8].

7.2.4 There are situations where the GUM uncertainty framework might not be satisfactory, including those
where

a) the measurement function is non-linear,

b) the probability distributions for the input quantities are asymmetric,

c) the uncertainty contributions |c1|u(x1), . . . , |cN |u(xN ) (see 4.14) are not of approximately the same mag-
nitude [JCGM 100:2008 (GUM) G.2.2], and

d) the probability distribution for the output quantity is either asymmetric, or not a Gaussian or a
t-distribution.

Sometimes it is hard to establish in advance that the circumstances hold for the GUM uncertainty framework
to apply.
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?

coverage
probability p

?

Inputs

Outputs

Output

Figure 7 — Measurement uncertainty evaluation using the GUM uncertainty framework, where the

top-left part of the figure (bounded by broken lines) relates to obtaining an estimate y of the output

quantity Y and the associated standard uncertainty u(y), and the remainder relates to the

determination of a coverage interval for Y

7.2.5 The use of the GUM uncertainty framework becomes more difficult when forming partial derivatives
(or numerical approximations to them) for a measurement model that is complicated, as needed by the law
of propagation of uncertainty (possibly with higher-order terms) [JCGM 100:2008 (GUM) 5]. A valid and
sometimes more readily applicable treatment is obtained by applying a suitable Monte Carlo implementation
of the propagation of distributions (see 7.4).

7.3 Analytic methods

7.3.1 Analytic methods by which an algebraic form for the probability distribution for the output quantity
can be obtained do not introduce any approximation, but can be applied only in relatively simple cases. A
treatment of such methods is available [8, 12]. Some cases that can be so handled for a general number N
of input quantities are linear measurement functions (expression (3)), where the probability distributions for
all input quantities are Gaussian, or all are rectangular with the same width. An instance with two input
quantities (N = 2), for which the probability distributions for the input quantities are rectangular, and the
probability distribution for the output quantity is trapezoidal [10], is illustrated in figure 3.

7.3.2 Cases where there is one input quantity (N = 1) can often be treated analytically, using a for-
mula [25, pages 57–61] to derive algebraically a probability distribution for the output quantity. Such cases
arise in the transformation of measurement units, for example from linear to logarithmic units [10, pages 95–
98].

7.3.3 An advantage of an algebraic solution is that it provides insight through displaying the dependence of
the probability distribution for the output quantity on parameters of the probability distributions for the input
quantities.
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7.4 Monte Carlo method

7.4.1 JCGM 101:2008 provides detailed information on MCM as an implementation of the propagation of
distributions [JCGM 101:2008 5.9]. MCM has fewer conditions associated with its use than the GUM uncertainty
framework [JCGM 101:2008 5.10]. Figure 8 illustrates the procedure. JCGM 101:2008 gives examples to
compare MCM with the use of the GUM uncertainty framework [JCGM 101:2008 9].

7.4.2 JCGM 101:2008 provides an adaptive MCM procedure, in which the number of Monte Carlo trials is
determined automatically by utilizing a measure of convergence of the overall process [JCGM 101:2008 7.9].

7.4.3 In JCGM 101:2008 there is a procedure that uses MCM to decide whether the application of the GUM
uncertainty framework in any particular case is valid [JCGM 101:2008 8].

coverage interval for Y
?estimate y of Y and associated

standard uncertainty u(y)

sorted measurement
function values:

discrete representation of the
distribution function for Y?

?

M measurement function values
corresponding to these draws

?

M draws of X1, . . . , XN from the
corresponding probability distributions

?

measurement
function Y =
f(X1, . . . , XN )

?

probability
distributions for the Xi

?

number M of
Monte Carlo trials

?

coverage
probability pInputs

Outputs

Figure 8 — Measurement uncertainty evaluation using a Monte Carlo method, where the part of the

figure to the left of the broken line relates to obtaining an estimate y of the output quantity Y and the

associated standard uncertainty u(y), and the remainder relates to the determination of a coverage

interval for Y

7.5 Measurement models with any number of output quantities

7.5.1 In order to evaluate the uncertainties and covariances associated with estimates of the output quantities
for measurement models with any number of output quantities, both the GUM uncertainty framework and MCM,
as treated in JCGM 101:2008, require extension. The GUM [JCGM 100:2008 (GUM) F.1.2.3] outlines such an
extension of the GUM uncertainty framework, but considers it further only in examples.

7.5.2 In JCGM 102 [5], it is stated that the law of propagation of uncertainty, a main constituent of the GUM
uncertainty framework, can succinctly be expressed in an equivalent matrix form when applied to a measurement
model having a single output quantity. The matrix expression has the advantage of being suitable as a basis
for implementation in software, and for extension to more general types of measurement model.

7.5.3 That extension is given in JCGM 102 for a measurement function having any number of output
quantities. The extension to any number of output quantities in a general measurement model (see 3.16) is also
treated in JCGM 102.
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7.5.4 JCGM 102 also applies MCM to measurement models with any number of output quantities. A discrete
representation of the probability distribution for the output quantities is provided. Expressions are given for
the estimates of the output quantities, the standard uncertainties associated with these estimates, and the
covariances associated with pairs of these estimates in terms of that representation.

7.5.5 In addition to obtaining estimates of the output quantities, together with the associated standard
uncertainties and covariances, it might be required to obtain a region containing the output quantities with
a specified (coverage) probability. It is natural to consider the extension to regions of the probabilistically
symmetric coverage interval and the shortest coverage interval. However, there is no natural counterpart of a
probabilistically symmetric coverage interval in the form of a coverage region, whereas there is for a shortest
coverage interval. The determination of a smallest coverage region is generally a difficult task.

7.5.6 In some circumstances, it is reasonable to provide an approximate coverage region having simple
geometric shape. Two particular forms of coverage region are considered in this regard. One form results from
characterizing the output quantities by a joint Gaussian distribution, for example on the basis of the central
limit theorem [JCGM 100:2008 (GUM) G.2], in which case the smallest coverage region is bounded by a hyper-
ellipsoid. The other form constitutes a hyper-rectangular coverage region. Procedures for obtaining these forms
are provided in JCGM 102.

8 Measurement uncertainty in conformity assessment

8.1 Conformity assessment is an area of importance in manufacturing quality control, legal metrology, and
in the maintenance of health and safety. In the industrial inspection of manufactured parts, decisions are made
concerning the compatibility of the parts with the design specification. Similar issues arise in the context of
regulation (relating to emissions, radiation, drugs, doping control, etc.) concerning whether stipulated limits for
true quantity values have been surpassed. Guidance is provided in JCGM 106 [7]. Also see reference [18].

8.2 Measurement is intrinsic to conformity assessment in deciding whether the output quantity, or measur-
and, conforms to a specified requirement. For a single quantity, such a requirement typically takes the form
of specification limits that define an interval of permissible quantity values. In the absence of uncertainty, a
measured quantity value lying within this interval is said to be conforming, and non-conforming otherwise. The
influence of measurement uncertainty on the inspection process necessitates a balance of risks between producers
and consumers.

8.3 The possible values of a quantity Y of interest are represented by a probability distribution. The
probability that Y conforms to specification can be calculated, given this probability distribution and the
specification limits.

8.4 Because of the incomplete knowledge of the quantity Y (as encoded in its probability distribution),
there is a risk of a mistaken decision in deciding conformity to specification. Such mistaken decisions are of
two types: a quantity accepted as conforming might actually be non-conforming, and a quantity rejected as
non-conforming might actually conform. The related risks correspond, respectively, to consumer’s risk and
producer’s risk (see JCGM 106).

8.5 By defining an acceptance interval of acceptable measured quantity values, the risks of a mistaken
decision concerning acceptance or rejection can be balanced so as to minimize the costs associated with these
decisions [19]. The problem of calculating the conformity probability and the probabilities of the two types of
mistaken decision, given the probability distribution, the specification limits, and the limits of the acceptance
interval is addressed in JCGM 106. The choice of acceptance interval limits is a matter that depends on the
implications of these mistaken decisions.

8.6 Although the probability distribution in 8.3 to 8.5 is general, the treatment is then specialized
in JCGM 106 to the most important case in practice, namely, when the probability distribution is Gaussian.
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9 Applications of the least-squares method

9.1 Guidance on the application of the least-squares method (also known as least-squares adjustment) to data
evaluation problems in metrology is provided in JCGM 107 [3]. In such problems there is often an underlying
theoretical relationship between an independent variable and a dependent variable. This relationship constitutes
the basis of a parameter adjustment or curve-fitting problem. The input quantities in the related measurement
model are the quantities of which the measured values of the independent and dependent variables are outcomes.
The output quantities are the quantities representing the required parameters. The manner in which the output
quantities are obtained from the input quantities by means of a least-squares procedure defines the measurement
model.

9.2 In calibration terminology (see 6.8), a measured quantity value of an independent variable would typically
be that of a measurement standard. The value of the dependent variable would be an indication value returned
by the measuring system for the corresponding value of the independent variable. In the curve-fitting context,
which includes calibration as a special case, the adjustment procedure used in JCGM 107 is a generalized version
of the usual least-squares procedure.

9.3 The task is to estimate the parameters (and sometimes even their number) from pairs of measured
quantity values and the corresponding indication values. These pairs, together with the associated standard
uncertainties and, when appropriate, covariances, constitute the input data to the adjustment.

9.4 Typical measurement problems to which JCGM 107 can be applied include (a) linear or non-linear curve-
fitting problems, including the case of imperfectly known values of the independent variable, and (b) fitting of
general models to estimate parameters in a physical process. The application of JCGM 107 is not restricted to
curve-fitting problems in the strictest sense. It can also be used to treat, for instance, convolution problems [21],
the adjustment of fundamental constants [22], and key comparison data evaluation [9].

9.5 For problems of type (a) in 9.4, once the least-squares method has been used to estimate the parameters
of a calibration function and evaluate the associated standard uncertainties and covariances, the measuring
system will subsequently be used for measurement. The estimates of the parameters of the calibration function,
together with a particular indication value, are then used to estimate the corresponding quantity. The stan-
dard uncertainty associated with this estimate is evaluated using the standard uncertainties and covariances
associated with the parameter estimates and the standard uncertainty associated with the indication value.

9.6 It is emphasized in JCGM 107 that the uncertainty structure should be taken fully into account when
formulating and solving the least-squares problem. ‘Uncertainty structure’ refers to the standard uncertainties
associated with the measured quantity values and indication values and any covariances associated with pairs
of these values.

9.7 For problems of type (b) in 9.4, or in terms of determining the parameters in problems of type (a),
the adjustment problem is rarely a problem in only one output quantity. Rather, the problem involves a
number of output quantities in which the mathematical formulation can conveniently be expressed in terms
of matrices. JCGM 107 makes extensive use of matrix formalism, which is well adapted to numerical solution
using a computer, as usually required in practice (also see 7.5).
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A Acronyms and initialisms

Table A.1 gives acronyms and initialisms used in this document

Table A.1 — Acronyms and initialisms

Acronym or initialism Description

BIPM Bureau International des Poids et Mesures
GUM Guide to the expression of uncertainty in measurement
IEC International Electrotechnical Commission
IFCC International Federation of Clinical Chemistry and Laboratory Medicine
ILAC International Laboratory Accreditation Cooperation
ISO International Organization for Standardization
IUPAC International Union of Pure and Applied Chemistry
IUPAP International Union of Pure and Applied Physics
JCGM Joint Committee for Guides in Metrology
MCM Monte Carlo method
OIML International Organization of Legal Metrology
TAG4 ISO Technical Advisory Group 4
VIM International Vocabulary of Metrology—Basic and general concepts and asso-

ciated terms
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