
 

 

 

 

JCGM 102:2011 

Evaluation of measurement 
data – Supplement 2 to the 
“Guide to the expression of 
uncertainty in measurement” – 
Extension to any number of 
output quantities 

Évaluation des données de mesure − 
Supplément 2 du “Guide pour 
l’expression de l’incertitude de mesure” 
– Extension à un nombre quelconque de 
grandeurs de sortie 
 

 

 

 

 

 

 

 

 

 

October 2011 

© JCGM 2011 

 



JCGM 102:2011 
 

  © JCGM 2011 – All rights reserved 

Document produced by Working Group 1 of the Joint 
Committee for Guides in Metrology (JCGM/WG 1). 
 
 
Copyright of this document is shared jointly by the 
JCGM member organizations (BIPM, IEC, IFCC, 
ILAC, ISO, IUPAC, IUPAP and OIML). 

Document produit par le Groupe de travail 1 du 
Comité commun pour les guides en métrologie 
(JCGM/WG 1). 
 
Les droits d’auteur relatifs à ce document sont la 
propriété conjointe des organisations membres du 
JCGM (BIPM, CEI, IFCC, ILAC, ISO, IUPAC, IUPAP 
et OIML). 

 

 

 

Copyrights 

Even if the electronic version of this document is 
available free of charge on the BIPM’s website 
(www.bipm.org), copyright of this document is 
shared jointly by the JCGM member organizations, 
and all respective logos and emblems are vested in 
them and are internationally protected. Third parties 
cannot rewrite or re-brand, issue or sell copies to the 
public, broadcast or use it on-line. For all commercial 
use, reproduction or translation of this document 
and/or of the logos, emblems, publications or other 
creations contained therein, the prior written 
permission of the Director of the BIPM must be 
obtained. 

 

 

 

 

Droits d’auteur 

Même si une version électronique de ce document 
peut être téléchargée gratuitement sur le site internet 
du BIPM (www.bipm.org), les droits d’auteur relatifs 
à ce document sont la propriété conjointe des 
organisations membres du JCGM et l’ensemble de 
leurs logos et emblèmes respectifs leur 
appartiennent et font l’objet d’une protection 
internationale. Les tiers ne peuvent le réécrire ou le 
modifier, le distribuer ou vendre des copies au 
public, le diffuser ou le mettre en ligne. Tout usage 
commercial, reproduction ou traduction de ce 
document et/ou des logos, emblèmes et/ou 
publications qu’il comporte, doit recevoir 
l’autorisation écrite préalable du directeur du BIPM. 

 
 
 
 
 

     

      
 
 



Joint Committee for Guides in Metrology JCGM

102

2011

Evaluation of measurement data — Supplement 2
to the “Guide to the expression of uncertainty in
measurement” — Extension to any number of
output quantities
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Foreword

In 1997 a Joint Committee for Guides in Metrology (JCGM), chaired by the Director of the Bureau International
des Poids et Mesures (BIPM), was created by the seven international organizations that had originally in 1993
prepared the “Guide to the expression of uncertainty in measurement” (GUM) and the “International vocabulary
of basic and general terms in metrology” (VIM). The JCGM assumed responsibility for these two documents
from the ISO Technical Advisory Group 4 (TAG4).

The Joint Committee is formed by the BIPM with the International Electrotechnical Commission (IEC), the
International Federation of Clinical Chemistry and Laboratory Medicine (IFCC), the International Laboratory
Accreditation Cooperation (ILAC), the International Organization for Standardization (ISO), the International
Union of Pure and Applied Chemistry (IUPAC), the International Union of Pure and Applied Physics (IUPAP),
and the International Organization of Legal Metrology (OIML).

JCGM has two Working Groups. Working Group 1, “Expression of uncertainty in measurement”, has the task
to promote the use of the GUM and to prepare Supplements and other documents for its broad application.
Working Group 2, “Working Group on International vocabulary of basic and general terms in metrology (VIM)”,
has the task to revise and promote the use of the VIM.

Supplements such as this one are intended to give added value to the GUM by providing guidance on aspects of
uncertainty evaluation that are not explicitly treated in the GUM. The guidance will, however, be as consistent
as possible with the general probabilistic basis of the GUM.

The present Supplement 2 to the GUM has been prepared by Working Group 1 of the JCGM, and has benefited
from detailed reviews undertaken by member organizations of the JCGM and National Metrology Institutes.

c© JCGM 2011— All rights reserved v
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Introduction

The “Guide to the expression of uncertainty in measurement” (GUM) [JCGM 100:2008] is mainly concerned
with univariate measurement models, namely models having a single scalar output quantity. However, mod-
els with more than one output quantity arise across metrology. The GUM includes examples, from electrical
metrology, with three output quantities [JCGM 100:2008 H.2], and thermal metrology, with two output quan-
tities [JCGM 100:2008 H.3]. This Supplement to the GUM treats multivariate measurement models, namely
models with any number of output quantities. Such quantities are generally mutually correlated because they
depend on common input quantities. A generalization of the GUM uncertainty framework [JCGM 100:2008 5]
is used to provide estimates of the output quantities, the standard uncertainties associated with the estimates,
and covariances associated with pairs of estimates. The input or output quantities in the measurement model
may be real or complex.

Supplement 1 to the GUM [JCGM 101:2008] is concerned with the propagation of probability distributions
[JCGM 101:2008 5] through a measurement model as a basis for the evaluation of measurement uncertainty,
and its implementation by a Monte Carlo method [JCGM 101:2008 7]. Like the GUM, it is only concerned with
models having a single scalar output quantity [JCGM 101:2008 1]. This Supplement describes a generalization of
that Monte Carlo method to obtain a discrete representation of the joint probability distribution for the output
quantities of a multivariate model. The discrete representation is then used to provide estimates of the output
quantities, and standard uncertainties and covariances associated with those estimates. Appropriate use of the
Monte Carlo method would be expected to provide valid results when the applicability of the GUM uncertainty
framework is questionable, namely when (a) linearization of the model provides an inadequate representation, or
(b) the probability distribution for the output quantity (or quantities) departs appreciably from a (multivariate)
Gaussian distribution.

Guidance is also given on the determination of a coverage region for the output quantities of a multivariate
model, the counterpart of a coverage interval for a single scalar output quantity, corresponding to a stipulated
coverage probability. The guidance includes the provision of coverage regions that take the form of hyper-
ellipsoids and hyper-rectangles. A calculation procedure that uses results provided by the Monte Carlo method
is also described for obtaining an approximation to the smallest coverage region.

vi c© JCGM 2011— All rights reserved
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Evaluation of measurement data — Supplement 2
to the “Guide to the expression of uncertainty in
measurement” — Extension to any number of output
quantities

1 Scope

This Supplement to the “Guide to the expression of uncertainty in measurement” (GUM) is concerned with
measurement models having any number of input quantities (as in the GUM and GUM Supplement 1) and
any number of output quantities. The quantities involved might be real or complex. Two approaches are
considered for treating such models. The first approach is a generalization of the GUM uncertainty framework.
The second is a Monte Carlo method as an implementation of the propagation of distributions. Appropriate
use of the Monte Carlo method would be expected to provide valid results when the applicability of the GUM
uncertainty framework is questionable.

The approach based on the GUM uncertainty framework is applicable when the input quantities are summarized
(as in the GUM) in terms of estimates (for instance, measured values) and standard uncertainties associated
with these estimates and, when appropriate, covariances associated with pairs of these estimates. Formulæ
and procedures are provided for obtaining estimates of the output quantities and for evaluating the associated
standard uncertainties and covariances. Variants of the formulæ and procedures relate to models for which the
output quantities (a) can be expressed directly in terms of the input quantities as measurement functions, and
(b) are obtained through solving a measurement model, which links implicitly the input and output quantities.

The counterparts of the formulæ in the GUM for the standard uncertainty associated with an estimate of
the output quantity would be algebraically cumbersome. Such formulæ are provided in a more compact form
in terms of matrices and vectors, the elements of which contain variances (squared standard uncertainties),
covariances and sensitivity coefficients. An advantage of this form of presentation is that these formulæ can
readily be implemented in the many computer languages and systems that support matrix algebra.

The Monte Carlo method is based on (i) the assignment of probability distributions to the input quantities in
the measurement model [JCGM 101:2008 6], (ii) the determination of a discrete representation of the (joint)
probability distribution for the output quantities, and (iii) the determination from this discrete representation of
estimates of the output quantities and the evaluation of the associated standard uncertainties and covariances.
This approach constitutes a generalization of the Monte Carlo method in Supplement 1 to the GUM, which
applies to a single scalar output quantity.

For a prescribed coverage probability, this Supplement can be used to provide a coverage region for the output
quantities of a multivariate model, the counterpart of a coverage interval for a single scalar output quantity.
The provision of coverage regions includes those taking the form of a hyper-ellipsoid or a hyper-rectangle. These
coverage regions are produced from the results of the two approaches described here. A procedure for providing
an approximation to the smallest coverage region, obtained from results provided by the Monte Carlo method,
is also given.

This Supplement contains detailed examples to illustrate the guidance provided.

This document is a Supplement to the GUM and is to be used in conjunction with it and GUM Supplement 1.
The audience of this Supplement is that of the GUM and its Supplements. Also see JCGM 104.

c© JCGM 2011— All rights reserved 1
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2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references,
only the edition cited applies. For undated references, the latest edition of the referenced document (including
any amendments) applies.

JCGM 100:2008. Guide to the expression of uncertainty in measurement (GUM).

JCGM 101:2008. Evaluation of measurement data — Supplement 1 to the “Guide to the expression of uncer-
tainty in measurement” — Propagation of distributions using a Monte Carlo method.

JCGM 104:2009. Evaluation of measurement data — An introduction to the “Guide to the expression of
uncertainty in measurement” and related documents.

JCGM 200:2008. International Vocabulary of Metrology—Basic and General Concepts and Associated Terms
(VIM).

3 Terms and definitions

For the purposes of this Supplement, the definitions of the GUM and the VIM apply unless otherwise indicated.
Some of the most relevant definitions, adapted or generalized where necessary from these documents, are
given below. Further definitions are given, including definitions taken or adapted from other sources, that are
especially important for this Supplement.

A glossary of principal symbols used is given in annex D.

3.1
real quantity
quantity whose numerical value is a real number

3.2
complex quantity
quantity whose numerical value is a complex number

NOTE A complex quantity Z can be represented by two real quantities in Cartesian form

Z ≡ (ZR, ZI )> = ZR + iZI ,

where > denotes “transpose”, i2 = −1 and ZR and ZI are, respectively, the real and imaginary parts of Z, or in polar
form

Z ≡ (Zr, Zθ)
> = Zr (cosZθ + i sinZθ) = Zre

iZθ ,

where Zr and Zθ are, respectively, the magnitude (amplitude) and phase of Z.

3.3
vector quantity
set of quantities arranged as a matrix having a single column

3.4
real vector quantity
vector quantity with real components

EXAMPLE A real vector quantityX containing N real quantities X1, . . . , XN expressed as a matrix of dimension N × 1:

X =

 X1

...
XN

 = (X1, . . . , XN )>.
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3.5
complex vector quantity
vector quantity with complex components

EXAMPLE A complex vector quantity Z containing N complex quantities Z1, . . . ,ZN expressed as a matrix of
dimension N × 1:

Z =

 Z1

...
ZN

 = (Z1, . . . ,ZN )>.

3.6
vector measurand
vector quantity intended to be measured

NOTE Generalized from JCGM 200:2008 definition 2.3.

3.7
measurement model
model of measurement
model
mathematical relation among all quantities known to be involved in a measurement

NOTE 1 Adapted from JCGM 200:2008 definition 2.48.

NOTE 2 A general form of a measurement model is the equation h(Y,X1, . . . , XN ) = 0, where Y , the output quantity
in the measurement model, is the measurand, the quantity value of which is to be inferred from information about input
quantities X1, . . . , XN in the measurement model.

NOTE 3 In cases where there are two or more output quantities in a measurement model, the measurement model
consists of more than one equation.

3.8
multivariate measurement model
multivariate model
measurement model in which there is any number of output quantities

NOTE 1 The general form of a multivariate measurement model is the equations

h1(Y1, . . . , Ym, X1, . . . , XN ) = 0, . . . , hm(Y1, . . . , Ym, X1, . . . , XN ) = 0,

where Y1, . . . , Ym, the output quantities, m in number, in the multivariate measurement model, constitute the measurand,
the quantity values of which are to be inferred from information about input quantities X1, . . . , XN in the multivariate
measurement model.

NOTE 2 A vector representation of the general form of multivariate measurement model is

h(Y ,X) = 0,

where Y = (Y1, . . . , Ym)> and h = (h1, . . . , hm)> are matrices of dimension m× 1.

NOTE 3 If, in note 1, m, the number of output quantities, is unity, the model is known as a univariate measurement
model.

3.9
multivariate measurement function
multivariate function
function in a multivariate measurement model for which the output quantities are expressed in terms of the
input quantities

NOTE 1 Generalized from JCGM 200:2008 definition 2.49.
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NOTE 2 If a measurement model h(Y ,X) = 0 can explicitly be written as Y = f(X), where X = (X1, . . . , XN )>

are the input quantities, and Y = (Y1, . . . , Ym)> are the output quantities, f = (f1, . . . , fm)> is the multivariate mea-
surement function. More generally, f may symbolize an algorithm, yielding for input quantity values x = (x1, . . . , xN )>

a corresponding unique set of output quantity values y1 = f1(x), . . . , ym = fm(x).

NOTE 3 If, in note 2, m, the number of output quantities, is unity, the function is known as a univariate measurement
function.

3.10
real measurement model
real model
measurement model, generally multivariate, involving real quantities

3.11
complex measurement model
complex model
measurement model, generally multivariate, involving complex quantities

3.12
multistage measurement model
multistage model
measurement model, generally multivariate, consisting of a sequence of sub-models, in which output quantities
from one sub-model become input quantities to a subsequent sub-model

NOTE Only at the final stage of a multistage measurement model might it be necessary to consider a coverage region
for the output quantities based on the joint probability density function for those quantities.

EXAMPLE A common instance in metrology is the following pair of measurement sub-models in the context of cali-
bration. The first sub-model has input quantities whose measured values are provided by measurement standards and
corresponding indication values, and as output quantities the parameters in a calibration function. This sub-model
specifies the manner in which the output quantities are obtained from the input quantities, for example by solving a
least-squares problem. The second sub-model has as input quantities the parameters in the calibration function and a
quantity realized by a further indication value and as output quantity the quantity corresponding to that input quantity.

3.13
joint distribution function
distribution function
function giving, for every value ξ = (ξ1, . . . , ξN )>, the probability that each elementXi of the random variable X
be less than or equal to ξi

NOTE The joint distribution for the random variable X is denoted by GX(ξ), where

GX(ξ) = Pr(X1 ≤ ξ1, . . . , XN ≤ ξN ).

3.14
joint probability density function
probability density function
non-negative function gX(ξ) satisfying

GX(ξ) =
∫ ξ1

−∞
· · ·
∫ ξN

−∞
gX(z) dzN · · · dz1

3.15
marginal probability density function
for a random variable Xi, a component of X having probability density function gX(ξ), the probability density
function for Xi alone:

gXi(ξi) =
∫ ∞
−∞
· · ·
∫ ∞
−∞

gX(ξ) dξN · · · dξi+1dξi−1 · · · dξ1
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NOTE When the components Xi of X are independent, gX(ξ) = gX1(ξ1)gX2(ξ2) · · · gXN (ξN ).

3.16
expectation
property of a random variable Xi, a component of X having probability density function gX(ξ), given by

E(Xi) =
∫ ∞
−∞
· · ·
∫ ∞
−∞

ξigX(ξ) dξN · · · dξ1 =
∫ ∞
−∞

ξigXi(ξi) dξi

NOTE 1 Generalized from JCGM 101:2008 definition 3.6.

NOTE 2 The expectation of the random variable X is E(X) = (E(X1), . . . , E(XN ))>, a matrix of dimension N × 1.

3.17
variance
property of a random variable Xi, a component of X having probability density function gX(ξ), given by

V (Xi) =
∫ ∞
−∞
· · ·
∫ ∞
−∞

[ξi − E(Xi)]2gX(ξ) dξN · · · dξ1 =
∫ ∞
−∞

[ξi − E(Xi)]2gXi(ξi) dξi

NOTE Generalized from JCGM 101:2008 definition 3.7.

3.18
covariance
property of a pair of random variables Xi and Xj , components of X having probability density function gX(ξ),
given by

Cov(Xi, Xj) = Cov(Xj , Xi) =
∫ ∞
−∞
· · ·
∫ ∞
−∞

[ξi − E(Xi)][ξj − E(Xj)]gX(ξ) dξN · · · dξ1

=
∫ ∞
−∞

∫ ∞
−∞

[ξi − E(Xi)][ξj − E(Xj)]gXi,Xj (ξi, ξj) dξidξj ,

where gXi,Xj (ξi, ξj) is the joint PDF for the two random variables Xi and Xj

NOTE 1 Generalized from JCGM 101:2008 definition 3.10.

NOTE 2 The covariance matrix of the random variable X is V (X), a symmetric positive semi-definite matrix of
dimension N ×N containing the covariances Cov(Xi, Xj). Certain operations involving V (X) require positive definite-
ness.

3.19
correlation
property of a pair of random variables Xi and Xj , components of X having probability density function gX(ξ),
given by

Corr(Xi, Xj) = Corr(Xj , Xi) =
Cov(Xi, Xj)√
V (Xi)V (Xj)

NOTE Corr(Xi, Xj) is a quantity of dimension one.

3.20
measurement covariance matrix
covariance matrix
symmetric positive semi-definite matrix of dimension N × N associated with an estimate of a real vector
quantity of dimension N × 1, containing on its diagonal the squares of the standard uncertainties associated
with the respective components of the estimate of the quantity, and, in its off-diagonal positions, the covariances
associated with pairs of components of that estimate
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NOTE 1 Adapted from JCGM 101:2008 definition 3.11.

NOTE 2 A covariance matrix Ux of dimension N × N associated with the estimate x of a quantity X has the
representation

Ux =

 u(x1, x1) · · · u(x1, xN )
...

. . .
...

u(xN , x1) · · · u(xN , xN )

 =

 u2(x1) · · · u(x1, xN )
...

. . .
...

u(xN , x1) · · · u2(xN )

,
where u(xi, xi) = u2(xi) is the variance (squared standard uncertainty) associated with xi and u(xi, xj) is the covariance
associated with xi and xj . When elements Xi and Xj of X are uncorrelated, u(xi, xj) = 0.

NOTE 3 In GUM Supplement 1 [JCGM 101:2008], the measurement covariance matrix is termed uncertainty matrix.

NOTE 4 Some numerical difficulties can occasionally arise when working with covariance matrices. For instance, a
covariance matrix Ux associated with a vector estimate x may not be positive definite. That possibility can be a
result of the way Ux has been calculated. As a consequence, the Cholesky factor of Ux may not exist. The Cholesky
factor is used in working numerically with Ux [7]; also see annex B. Moreover, the variance associated with a linear
combination of the elements of x could be negative, when otherwise it would be expected to be small and positive. In
such a situation procedures exist for “repairing” Ux such that the repaired covariance matrix is positive definite. As a
result, the Cholesky factor would exist, and variances of such linear combinations would be positive as expected. Such
a procedure is given by the following variant of that in reference [27]. Form the eigendecomposition

Ux =QDQ>,

where Q is orthonormal and D is the diagonal matrix of eigenvalues of Ux. Construct a new diagonal matrix, D′ say,
which equalsD, but with elements that are smaller than dmin replaced by dmin. Here, dmin equals the product of the unit
roundoff of the computer used and the largest element of D. Subsequent calculations would use a repaired covariance
matrix U ′

x formed from

U ′
x =QD′Q>.

NOTE 5 Certain operations involving Ux require positive definiteness.

3.21
correlation matrix
symmetric positive semi-definite matrix of dimension N×N associated with an estimate of a real vector quantity
of dimension N × 1, containing the correlations associated with pairs of components of the estimate

NOTE 1 A correlation matrix Rx of dimension N × N associated with the estimate x of a quantity X has the
representation

Rx =

 r(x1, x1) · · · r(x1, xN )
...

. . .
...

r(xN , x1) · · · r(xN , xN )

,
where r(xi, xi) = 1 and r(xi, xj) is the correlation associated with xi and xj . When elements Xi and Xj of X are
uncorrelated, r(xi, xj) = 0 .

NOTE 2 Correlations are also known as correlation coefficients.

NOTE 3 Rx is related to Ux (see 3.20) by

Ux =DxRxDx,

where Dx is a diagonal matrix of dimension N ×N with diagonal elements u(x1), . . . , u(xN ). Element (i, j) of Ux is
given by

u(xi, xj) = r(xi, xj)u(xi)u(xj).

NOTE 4 A correlation matrixRx is positive definite or singular, if and only if the corresponding covariance matrix Ux

is positive definite or singular, respectively. Certain operations involving Rx require positive definiteness.
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NOTE 5 When presenting numerical values of the off-diagonal elements of a correlation matrix, rounding to three
places of decimals is often sufficient. However, if the correlation matrix is close to being singular, more decimal digits
need to be retained in order to avoid numerical difficulties when using the correlation matrix as input to an uncertainty
evaluation. The number of decimal digits to be retained depends on the nature of the subsequent calculation, but as a
guide can be taken as the number of decimal digits needed to represent the smallest eigenvalue of the correlation matrix
with two significant decimal digits. For a correlation matrix of dimension 2× 2, the eigenvalues λmax and λmin are 1±|r|,
the smaller, λmin, being 1− |r|, where r is the off-diagonal element of the matrix. If a correlation matrix is known to be
singular prior to rounding, rounding towards zero reduces the risk that the rounded matrix is not positive semi-definite.

3.22
sensitivity matrix
matrix of partial derivatives of first order for a real measurement model with respect to either the input quantities
or the output quantities evaluated at estimates of those quantities

NOTE For N input quantities and m output quantities, the sensitivity matrix with respect to X has dimension m×N
and that with respect to Y has dimension m×m.

3.23
coverage interval
interval containing the true quantity value with a stated probability, based on the information available

NOTE 1 Adapted from JCGM 101:2008 definition 3.12.

NOTE 2 The probabilistically symmetric coverage interval for a scalar quantity is the interval such that the probability
that the true quantity value is less than the smallest value in the interval is equal to the probability that the true quantity
value is greater than the largest value in the interval [adapted from JCGM 101:2008 3.15].

NOTE 3 The shortest coverage interval for a quantity is the interval of shortest length among all coverage intervals for
that quantity having the same coverage probability [adapted from JCGM 101:2008 3.16].

3.24
coverage region
region containing the true vector quantity value with a stated probability, based on the information available

3.25
coverage probability
probability that the true quantity value is contained within a specified coverage interval or coverage region

NOTE 1 Adapted from JCGM 101:2008 definition 3.13.

NOTE 2 The coverage probability is sometimes termed “level of confidence” [JCGM 100:2008 6.2.2].

3.26
smallest coverage region
coverage region for a vector quantity with minimum (hyper-)volume among all coverage regions for that quantity
having the same coverage probability

NOTE For a single scalar quantity, the smallest coverage region is the shortest coverage interval for the quantity. For
a bivariate quantity, it is the coverage region with the smallest area among all coverage regions for that quantity having
the same coverage probability.

3.27
multivariate Gaussian distribution
probability distribution of a random variable X of dimension N×1 having the joint probability density function

gX(ξ) =
1

(2π)N/2 [det(V )]1/2
exp

(
−1

2
(ξ − µ)>V −1(ξ − µ)

)

NOTE µ is the expectation and V is the covariance matrix of X, which must be positive definite.
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3.28
multivariate t-distribution
probability distribution of a random variable X of dimension N×1 having the joint probability density function

gX(ξ) =
Γ (ν+N

2 )
Γ (ν2 )(πν)N/2

× 1

[det(V )]1/2

[
1 +

1
ν

(ξ − µ)>V −1(ξ − µ)
]−(ν+N)/2

,

with parameters µ, V and ν, where V is symmetric positive definite and

Γ (z) =
∫ ∞

0

tz−1e−t dt, z > 0,

is the gamma function

NOTE 1 The multivariate t-distribution is based on the observation that if a vector random variable Q of
dimension N × 1 and a scalar random variable W are independent and have respectively a Gaussian distribution with
zero expectation and positive definite covariance matrix V of dimension N ×N , and a chi-squared distribution with ν
degrees of freedom, and (ν/W )1/2Q =X −µ, then X has the given probability distribution.

NOTE 2 gX(ξ) does not factorize into the product of N probability density functions even when V is a diagonal
matrix. Generally, the components of X are statistically dependent random variables.

EXAMPLE When N = 2, ν = 5, and V is the identity matrix of dimension 2 × 2, the probability that X1 > 1
is 18 %, while the conditional probability that X1 > 1 given that X2 > 2 is 26 %.

4 Conventions and notation

For the purposes of this Supplement the following conventions and notation are adopted.

4.1 In the GUM [JCGM 100:2008 4.1.1 note 1], for economy of notation the same (upper case) symbol is
used for

(i) the (physical) quantity, which is assumed to have an essentially unique true value, and

(ii) the corresponding random variable.

NOTE The random variable has different roles in Type A and Type B uncertainty evaluations. In a Type A uncertainty
evaluation, the random variable represents “. . . the possible outcome of an observation of the quantity”. In a Type B
uncertainty evaluation, the probability distribution for the random variable describes the state of knowledge about the
quantity.

This ambiguity in the symbol is harmless in most circumstances.

In this Supplement, as well as in Supplement 1, for the input quantities subjected to a Type A uncertainty
evaluation, the same (uppercase) symbol is used for three concepts, namely

a) the quantity,

b) the random variable representing the possible outcome of an observation of the quantity, and

c) the random variable whose probability distribution describes the state of knowledge about the quantity.

This further ambiguity between two distinct random variables is not present in the GUM and is a potential
source of misunderstanding. In particular, it might be believed that the Monte Carlo procedure adopted in this
Supplement, as well as in Supplement 1, complies with the procedure suggested in GUM 4.1.4 note. Although
the two procedures are analogous in principle, in that both are based on repeatedly evaluating the model
for individual input quantity values drawn from a probability distribution, they are different in practice, in
that draws are made from different distributions. In GUM 4.1.4 note, draws are made from the frequency
distribution for the random variable b). In the Supplements, draws are made from the probability distribution
for the random variable c). The former approach is not recommended in most experimental situations [2].
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4.2 The input quantities in a measurement model are generically denoted by X1, . . . , XN , and collectively
by X = (X1, . . . , XN )>, a matrix of dimension N × 1, > denoting “transpose”.

4.3 Likewise the output quantities in a measurement model are generically denoted by Y1, . . . , Ym, and
collectively by Y = (Y1, . . . , Ym)>, a matrix of dimension m× 1.

4.4 When the Yi are expressed directly as formulæ in X, the measurement model can be written as

Y = f(X), (1)

where f is the multivariate measurement function. Equivalently (see 3.9), the measurement model can be
expressed as

Y1 = f1(X), . . . , Ym = fm(X),

where f1(X), . . . , fm(X) are components of f(X).

4.5 When the Yi are not expressed directly as formulæ in X, the measurement model is represented by the
equation

h(Y ,X) = 0, (2)

or, equivalently (see 3.8), by

h1(Y ,X) = 0, . . . , hm(Y ,X) = 0.

4.6 An estimate of X is denoted by x = (x1, . . . , xN )>, a matrix of dimension N ×1. The covariance matrix
associated with x is denoted by Ux, a matrix of dimension N ×N (see 3.20).

4.7 An estimate of Y is denoted by y = (y1, . . . , ym)>, a matrix of dimension m× 1. The covariance matrix
associated with y is denoted by Uy, a matrix of dimension m×m.

NOTE Uy is the counterpart, for m output quantities, of the variance u2(y) associated with y in the context of the
univariate measurement models of the GUM and GUM Supplement 1. In the GUM, u(y) is denoted by uc(y), the
subscript “c” denoting combined. As in Supplement 1, the use of “c” in this context is considered superfluous for the
reasons stated in 4.10 of that Supplement. Accordingly, “c” is similarly not used in this Supplement.

4.8 When estimates of the output quantities in a measurement model are to be used individually, each of
these quantities may be considered as the output quantity in the corresponding univariate (scalar) measurement
model. When the output quantities are to be considered together, for instance used in a subsequent calculation,
any correlations associated with pairs of estimates of the output quantities need to be taken into account.

4.9 The symbol adopted for the standard uncertainty associated with a quantity value x is u(x). When the
context is such that there is no possibility of misunderstanding, the alternative notation ux can be adopted.
The alternative notation is not recommended when a quantity value is indexed or otherwise adorned, for
example xi or x̂.

4.10 x may be described as either “estimates of the input quantities”, or “an estimate of the (vector) input
quantity”. The latter description is mainly used in this Supplement (and similarly for the output quantities).

4.11 As in subclauses 4.2 to 4.10, a quantity is generally denoted by an upper case letter and an estimate
or some fixed value of the quantity (such as the expectation) by the corresponding lower case letter. Although
valuable for generic considerations, such a notation is largely inappropriate for physical quantities, because of the
established use of specific symbols, for example T for thermodynamic temperature and t for time. Therefore, in
some of the examples, a different notation is used, in which a quantity is denoted by its conventional symbol and
its expectation or an estimate of it by that symbol hatted. For instance, the quantity representing the amplitude
of an alternating current (example 1 of 6.2.2) is denoted by I and an estimate of I by Î [JCGM 101:2008 4.8].
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4.12 A departure is made from the symbols often used for a probability density function (PDF) and distri-
bution function. The GUM uses the generic symbol f to refer to a model and a PDF. Little confusion arises
in the GUM as a consequence of this usage. The situation in this Supplement is different. The concepts of
measurement function, PDF, and distribution function are central to following and implementing the guidance
provided. Therefore, in place of the symbols f and F to denote a PDF and a distribution function, respectively,
the symbols g and G are used. These symbols are indexed appropriately to denote the quantity concerned. The
symbol f is reserved for a measurement function. Vector counterparts of these symbols are also used.

4.13 A PDF is assigned to a quantity, which might be a single scalar quantity X or a vector quantity X. In
the scalar case, the PDF for X is denoted by gX(ξ), where ξ is a variable describing the possible values of X.
This X is considered as a random variable with expectation E(X) and variance V (X).

4.14 In the vector case, the PDF for X is denoted by gX(ξ), where ξ = (ξ1, . . . , ξN )> is a variable describing
the possible values of the quantity X. This X is considered as a random variable with expectation E(X) and
covariance matrix V (X).

4.15 Analogously, in the scalar case, the PDF for Y is denoted by gY (η) and, in the vector case, the PDF
for Y is denoted by gY (η).

4.16 According to Resolution 10 of the 22nd CGPM (2003) “. . . the symbol for the decimal marker shall be
either the point on the line or the comma on the line . . . ”. The JCGM has decided to adopt, in its documents
in English, the point on the line.

5 Basic principles

5.1 General

5.1.1 In the GUM [JCGM 100:2008 4.1], a measuring system is modelled in terms of a function involving
real input quantities X1, . . . , XN and a real output quantity Y in the form of expression (1), namely Y = f(X),
where X ≡ (X1, . . . , XN )> is referred to as the real vector input quantity. This function is known as a real
univariate measurement function (see 3.9 note 3).

5.1.2 In practice, not all measuring systems encountered can be modelled as a measurement function in a
single scalar output quantity. Such systems might instead involve either

a) a number of output quantities Y1, . . . , Ym (denoted collectively by the real vector output
quantity Y ≡ (Y1, . . . , Ym)>), taking the form (1), namely Y = f(X), or

b) the more general form of measurement model, taking the form (2), namely h(Y ,X) = 0.

5.1.3 Further, some or all of the components of X and Y might correspond to components (real part and
imaginary part, or magnitude and phase) of complex input quantities. Therefore, all measurement models can
be considered (without loss of generality) as real. However, a treatment that is simpler than the corresponding
treatment involving real and imaginary parts applies for the complex case [14]. The treatment gives succinct
matrix expressions for the law of propagation of uncertainty when applied to measurement models with complex
quantities (complex models). See 6.4 and annex A.

5.1.4 This GUM Supplement considers the more general measurement models in 5.1.2 and 5.1.3.

5.2 Main stages of uncertainty evaluation

5.2.1 The main stages of uncertainty evaluation constitute formulation, propagation, and summarizing:
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a) Formulation:

1) define the output quantity Y , the quantity intended to be measured (the vector measurand);

2) determine the input quantity X upon which Y depends;

3) develop a measurement function [f in (1)] or measurement model (2) relating X and Y ;

4) on the basis of available knowledge assign PDFs — Gaussian (normal), rectangular (uniform), etc. —
to the components of X. Assign instead a joint PDF to the components of X that are not pairwise
independent;

b) Propagation:

propagate the PDFs for the components of X through the model to obtain the (joint) PDF for Y ;

c) Summarizing:

use the PDF for Y to obtain

1) the expectation of Y , taken as an estimate y of Y ,

2) the covariance matrix of Y , taken as the covariance matrix Uy associated with y, and

3) a coverage region containing Y with a specified probability p (the coverage probability).

5.2.2 The steps in the formulation stage are carried out by the metrologist. Guidance on the assignment
of PDFs (step 4 of stage a) in 5.2.1) is given in GUM Supplement 1 for some common cases and in 5.3. The
propagation and summarizing stages, b) and c), for which detailed guidance is provided here, require no further
metrological information, and in principle can be carried out to any required numerical tolerance for the problem
specified in the formulation stage.

NOTE Once the formulation stage a) in 5.2.1 has been carried out, the PDF for Y is completely specified mathematically,
but generally the calculation of the expectation, covariance matrix and coverage regions require numerical methods that
involve a degree of approximation.

5.3 Probability density functions for the input quantities

5.3.1 General

GUM Supplement 1 gives guidance on the assignment, in some common cirumstances, of PDFs to the input
quantities Xi in the formulation stage of uncertainty evaluation [JCGM 101:2008 6]. The only multivariate
distribution considered in GUM Supplement 1 is the multivariate Gaussian [JCGM 101:2008 6.4.8]. This
distribution is assigned to the input quantity X when the estimate x and associated covariance matrix Ux
constitute the only information available about X. A further multivariate distribution, the multivariate t-
distribution, is described in 5.3.2. This distribution arises when a series of indication values, regarded as being
obtained independently from a vector quantity with unknown expectation and unknown covariance matrix
having a multivariate Gaussian distribution, is the only information available about X. Also see 6.5.4.

5.3.2 Multivariate t-distribution

5.3.2.1 Suppose that a series of n indication values x1, . . . ,xn, each of dimension N × 1, is available,
with n > N , regarded as being obtained independently from a quantity with unknown expectation µ and
covariance matrix Σ of dimension N × N having the multivariate Gaussian distribution N(µ,Σ). The de-
sired input quantity X of dimension N × 1 is taken to be equal to µ. Then, assigning a non-informative
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joint prior distribution to µ and Σ , and using Bayes’ theorem, the marginal (joint) PDF for X is a
multivariate t-distribution tν(x̄,S/n) with ν = n−N degrees of freedom [11], where

x̄ =
1
n

(x1 + · · ·+ xn), S =
1
ν

[(x1 − x̄)(x1 − x̄)> + · · ·+ (xn − x̄)(xn − x̄)>].

NOTE The prior can be assigned in other ways, which would influence the degrees of freedom or even the distribution.

5.3.2.2 The PDF for X is

gX(ξ) =
Γ (n/2)

Γ (ν/2)(πν)N/2
× [det(S/n)]−1/2

[
1 +

1
ν

(ξ − x̄)>
(
S

n

)−1

(ξ − x̄)

]−n/2
,

where Γ (z) is the gamma function with argument z.

5.3.2.3 X has expectation and covariance matrix

E(X) = x̄, V (X) =
ν

ν − 2
S

n
,

where E(X) is defined only for ν > 1 (that is for n > N + 1) and V (X) only for ν > 2 (that is for n > N + 2).

5.3.2.4 To make a random draw from tν(x̄,S/n), make N random draws zi, i = 1, . . . , N , from the standard
Gaussian distribution N(0, 1) and a single random draw w from χ2

ν , the chi-squared distribution with ν degrees
of freedom, and form

ξ = x̄+Lz
√
ν

w
, z = (z1, . . . , zN )>,

where L is the lower triangular matrix of dimension N × N given by the Cholesky
decomposition S/n = LL> [13].

NOTE The matrix L can be determined as in reference [13], for example.

5.3.3 Construction of multivariate probability density functions

When the input quantities X1, . . . , XN are correlated, the information that typically is available about them
are the forms of their PDFs (say, that one is Gaussian, another is rectangular, etc.), estimates x1, . . . , xN , used
as their expectations, associated standard uncertainties u(x1), . . . , u(xN ), used as their standard deviations,
and covariances associated with pairs of the xi. A mathematical device known as a copula [20] can be used to
produce a PDF for X consistent with such information. Such a PDF is not unique.

5.4 Propagation of distributions

5.4.1 Figure 1 (left) shows an instance of a measurement model in which there are N = 3 mutually inde-
pendent input quantities X = (X1, X2, X3)> and m = 2 output quantities Y = (Y1, Y2)>. The measurement
function is f = (f1, f2)>. For i = 1, 2, 3, Xi is assigned the PDF gXi(ξi), and Y is characterized by the
joint PDF gY (η) ≡ gY1,Y2

(η1, η2). Figure 1 (right) adapts this instance to where X1 and X2 are mutually
dependent and characterized by the joint PDF gX1,X2

(ξ1, ξ2).

5.4.2 There might be an additional output quantity, Q say, depending on Y . Y would be regarded as an
input quantity to a further measurement model represented in terms of a measurement function t, say:

Q = t(Y ).

For example, Y might be the vector of masses in a set of mass standards, and Q the sums of some of them.
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gX1
(ξ1) -

gX2
(ξ2) -

gX3
(ξ3) -

Y1 = f1(X1, X2, X3)

Y2 = f2(X1, X2, X3)
- gY1,Y2

(η1, η2)
gX1,X2

(ξ1, ξ2) -

gX3
(ξ3) -

Y1 = f1(X1, X2, X3)

Y2 = f2(X1, X2, X3)
- gY1,Y2

(η1, η2)

Figure 1 — Propagation of distributions for N = 3 input quantities and m = 2 output quantities when

the input quantities X1, X2 and X3 are mutually independent and (right) when X1 and X2 are mutually

dependent (5.4.1)

5.4.3 Composition of the measurement functions f and t, which are regarded as sub-models, gives Q as a
function of X. It can, however, be desirable to retain the individual sub-models when they relate to functionally
distinct stages. These two sub-models constitute an instance of a multistage model (see 3.12).

5.4.4 The case when the final stage of a multistage model has an output quantity that is a single scalar
quantity, and that quantity is the only output quantity of interest, can be handled using GUM Supplement 1.

5.5 Obtaining summary information

5.5.1 An estimate y of the output quantity Y is the expectation E(Y ). The covariance matrix Uy associated
with y is the covariance matrix V (Y ).

5.5.2 For a coverage probability p, a coverage region RY for Y satisfies∫
R
Y

gY (η) dη = p.

NOTE 1 Although random variables corresponding to some quantities might be characterized by distributions having
no expectation or covariance matrix (see, for example, 5.3.2), a coverage region for Y always exists.

NOTE 2 Generally there is more than one coverage region for a stated coverage probability p.

5.5.3 There is no direct multivariate counterpart of the probabilistically symmetric 100p% coverage interval
considered in GUM Supplement 1. There is, however, a counterpart of the shortest 100p% coverage interval.
It is the 100p% coverage region for Y of smallest hyper-volume.

5.6 Implementations of the propagation of distributions

5.6.1 The propagation of distributions can be implemented in several ways:

a) analytical methods, that is methods that provide a mathematical representation of the PDF for Y ;

b) uncertainty propagation based on replacing the model by a first-order Taylor series approximation (a
generalization of the treatment in the GUM [JCGM 100:2008 5.1.2]) — the (generalized) law of propagation
of uncertainty;

c) numerical methods [JCGM 100:2008 G.1.5] that implement the propagation of distributions, specifically
using a Monte Carlo method (MCM).

NOTE 1 Solutions expressible analytically are ideal in that they do not introduce any approximation. They are
applicable in simple cases only, however. These methods are not considered further in this Supplement, apart from in
the examples for comparison purposes.

NOTE 2 MCM as considered here is regarded as a means for providing a numerical representation of the distribution for
the vector output quantity, rather than a simulation method per se. In the context of the propagation stage of uncertainty
evaluation, the problem to be solved is deterministic, there being no random physical process to be simulated.
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5.6.2 In uncertainty propagation, the estimate x = E(X) of X and the associated covariance
matrix Ux = V (X) are propagated through (a linearization of) the measurement model. This Supplement
provides procedures for doing so for the various types of model considered.

5.6.3 Figure 2 (left) illustrates the (generalized) law of propagation of uncertainty for a measure-
ment model with N = 3 mutually independent input quantities X = (X1, X2, X3)> and m = 2
output quantities Y = (Y1, Y2)>. X is estimated by x = (x1, x2, x3)> with associated standard
uncertainties u(x1), u(x2) and u(x3). Y is estimated by y = (y1, y2)> with associated covariance matrix Uy.
Figure 2 (right) applies when X1 and X2 are mutually dependent with covariance u(x1, x2) associated with the
estimates x1 and x2.

x1, u(x1) -

x2, u(x2) -

x3, u(x3) -

Y1 = f1(X1, X2, X3)

Y2 = f2(X1, X2, X3)
- y, Uy

x1, x2
u(x1), u(x2)
u(x1, x2)

-

x3, u(x3) -

Y1 = f1(X1, X2, X3)

Y2 = f2(X1, X2, X3)
- y, Uy

Figure 2 — Generalized law of propagation of uncertainty for N = 3 mutually independent input

quantities X1, X2 and X3, and m = 2 (almost invariably) mutually dependent output quantities, and

(right) as left, but for mutually dependent X1 and X2 (5.6.3)

5.6.4 In MCM, a discrete representation of the (joint) probability distribution for X is propagated through
the measurement model to obtain a discrete representation of the (joint) probability distribution for Y from
which the required summary information is determined.

6 GUM uncertainty framework

6.1 General

6.1.1 The propagation of uncertainty for measurement models that are more general than the form Y = f(X)
in the GUM is described (see 6.2 and 6.3). Although such measurement models are not directly considered in
the GUM, the same underlying principles may be used to propagate estimates of the input quantities and
the uncertainties associated with the estimates through the measurement model to obtain estimates of the
output quantities and the associated uncertainties. Mathematical expressions for the evaluation of uncertainty
are stated using matrix-vector notation, rather than the subscripted summations given in the GUM, because
generally such expressions are more compact and more naturally implemented within modern software packages
and computer languages.

6.1.2 For the application of the law of propagation of uncertainty, the same information concerning the input
quantities as for the univariate measurement model treated in the GUM is used:

a) an estimate x = (x1, . . . , xN )> of the input quantity X;

b) the covariance matrix Ux associated with x containing the covariances u(xi, xj), i = 1, . . . , N , j = 1, . . . , N ,
associated with xi and xj .

6.1.3 The description of the propagation of uncertainty given in 6.2 and 6.3 is for real measurement models,
including complex measurement models that are expressed in terms of real quantities. A treatment for complex
measurement models is given in 6.4. Also see 5.1.3.

6.1.4 Obtaining a coverage region for a vector output quantity is described in 6.5.
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6.2 Propagation of uncertainty for explicit multivariate measurement models

6.2.1 General

6.2.1.1 An explicit multivariate measurement model specifies a relationship between an output
quantity Y = (Y1, . . . , Ym)> and an input quantity X = (X1, . . . , XN )>, and takes the form

Y = f(X), f = (f1, . . . , fm)>,

where f denotes the multivariate measurement function.

NOTE Any particular function fj(X) may depend only on a subset of X, with each Xi appearing in at least one
function.

6.2.1.2 Given an estimate x of X, an estimate of Y is

y = f(x).

6.2.1.3 The covariance matrix of dimension m×m associated with y is

Uy =

 u(y1, y1) · · · u(y1, ym)
...

. . .
...

u(ym, y1) · · · u(ym, ym)

,
where cov(yj , yj) = u2(yj), and is given by

Uy =CxUxC
>
x , (3)

where Cx is the sensitivity matrix of dimension m×N given by evaluating

CX =


∂f1

∂X1
· · · ∂f1

∂XN
...

. . .
...

∂fm
∂X1

· · · ∂fm
∂XN


at X = x [19, page 29].

6.2.2 Examples

EXAMPLE 1 Resistance and reactance of a circuit element [JCGM 100:2008 H.2]

The resistance R and reactance X of a circuit element are determined by measuring the amplitude V of a sinusoidal
alternating potential difference applied to it, the amplitude I of the alternating current passed through it, and the phase
angle φ between the two. The bivariate measurement model for R and X in terms of V , I and φ is

R = f1(V, I, φ) =
V

I
cosφ, X = f2(V, I, φ) =

V

I
sinφ. (4)

In terms of the general notation, N = 3, m = 2, X ≡ (V, I, φ)> and Y ≡ (R,X)>.

An estimate y ≡ (R̂, X̂)> of resistance and reactance is obtained by evaluating expressions (4) at an

estimate x ≡ (V̂ , Î, φ̂)> of the input quantity X.

The covariance matrix Uy of dimension 2 × 2 associated with y is given by formula (3), where Cx is the sensitivity
matrix of dimension 2× 3 given by evaluating

∂f1
∂V

∂f1
∂I

∂f1
∂φ

∂f2
∂V

∂f2
∂I

∂f2
∂φ

 =


cosφ

I
−V cosφ

I2
−V sinφ

I

sinφ

I
−V sinφ

I2

V cosφ

I


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at X = x, and Ux is the covariance matrix of dimension 3× 3 associated with x.

NOTE In the GUM, reactance is denoted by X, which is the notation used here. The reactance X, a component of the
vector output quantity Y , is not to be confused with X, the vector input quantity.

EXAMPLE 2 Reflection coefficient measured by a microwave reflectometer (approach 1)

The (complex) reflection coefficient Γ measured by a calibrated microwave reflectometer, such as an automatic network
analyser, is given by the complex measurement model

Γ =
aW + b

cW + 1
, (5)

where W is the (complex) uncorrected reflection coefficient and a, b and c are (complex) calibration coefficients char-
acterizing the reflectometer [10, 16, 26].

In terms of the general notation, and working with real and imaginary parts of the quantities involved, N = 8, m = 2,
X ≡ (aR, aI , bR, bI , cR, cI ,WR,WI )> and Y ≡ (ΓR,ΓI )>.

An estimate y ≡ (Γ̂R, Γ̂I )> of the (complex) reflection coefficient is given by the real and imaginary parts of the
right-hand side of expression (5) evaluated at the estimate x of the input quantity X.

The covariance matrix Uy of dimension 2 × 2 associated with y is given by formula (3), where Cx is the sensitivity
matrix of dimension 2× 8 given by evaluating

∂ΓR

∂aR

∂ΓR

∂aI

∂ΓR

∂bR

∂ΓR

∂bI

∂ΓR

∂cR

∂ΓR

∂cI

∂ΓR

∂WR

∂ΓR

∂WI

∂ΓI

∂aR

∂ΓI

∂aI

∂ΓI

∂bR

∂ΓI

∂bI

∂ΓI

∂cR

∂ΓI

∂cI

∂ΓI

∂WR

∂ΓI

∂WI


at X = x, and Ux is the covariance matrix of dimension 8× 8 associated with x.

EXAMPLE 3 Calibration of mass standards

This example constitutes an instance of a multistage model (see 3.12, 5.4.2 and 5.4.3).

A set of q mass standards of unknown mass values m = (m1, . . . ,mq)
> is calibrated by comparison with a reference

kilogram, using a mass comparator, a sensitivity weight for determining the comparator sensitivity, and a number of
ancillary instruments such as a thermometer, a barometer and a hygrometer for determining the correction due to air
buoyancy. The reference kilogram and the sensitivity weight have masses mR and mS, respectively. The calibration
is carried out by performing, according to a suitable measurement procedure, a sufficient number k of comparisons
between groups of standards, yielding apparent, namely, in-air differences δ = (δ1, . . . , δk)>. Corresponding buoyancy

corrections b = (b1, . . . , bk)> are calculated. In-vacuo mass differences X are obtained from the sub-model X = f (W ),

where W =
(
mR, mS, δ

>, b>
)>

.

An estimate y ≡ (m̂1, . . . , m̂q)
> of the masses m is typically given by the least-squares solution of the over-determined

system of equations Am =X, where A is a matrix of dimension k× q with elements equal to +1, −1 or zero, according
to the mass standards involved in each comparison, and respecting the uncertainties associated with the estimate x
of X. With this choice, the estimate y is given by

y = UyA
>Ux

−1x, (6)

where the covariance matrix Uy of dimension q × q associated with y is given by Uy =
(
A>Ux

−1A
)−1

. Ux is the
covariance matrix of dimension k × k associated with x. A more detailed description of the sub-model, as well as a
procedure for obtaining Ux in terms of Uw, the covariance matrix associated with the estimate w of W , is available
[3].

The multivariate measurement model for this example can be expressed as

Y = UyA
>Ux

−1X,

where the measurement function is UyA
>Ux

−1X. In terms of the general notation, N = k, m = q and Y ≡m.

NOTE It is preferable computationally to obtain the estimate given by formula (6) by an algorithm based on orthogonal
factorization [13], rather than use this explicit formula.
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6.3 Propagation of uncertainty for implicit multivariate measurement models

6.3.1 General

6.3.1.1 An implicit multivariate measurement model specifies a relationship between an output
quantity Y = (Y1, . . . , Ym)> and an input quantity X = (X1, . . . , XN )>, and takes the form

h(Y ,X) = 0, h = (h1, . . . , hm)>.

6.3.1.2 Given an estimate x of X, an estimate y of Y is given by the solution of the system of equations

h(y,x) = 0. (7)

NOTE The system of equations (7) has generally to be solved numerically for y, using, for example, Newton’s method [12]

or a variant of that method, starting from an approximation y(0) to the solution.

6.3.1.3 The covariance matrix Uy of dimension m×m associated with y is evaluated from the system of
equations

CyUyC
>
y =CxUxC

>
x , (8)

where Cy is the sensitivity matrix of dimension m×m containing the partial derivatives ∂h`/∂Yj , ` = 1, . . . ,m,
j = 1, . . . ,m, and Cx is the sensitivity matrix of dimension m×N containing the partial derivatives ∂h`/∂Xi,
` = 1, . . . ,m, i = 1, . . . , N , all derivatives being evaluated at X = x and Y = y.

NOTE 1 The covariance matrix Uy in expression (8) is not defined if Cy is singular.

NOTE 2 Expression (8) is obtained in a similar way as expression (3), with the use of the implicit function theorem.

6.3.1.4 Formally, the covariance matrices Ux and Uy are related by

Uy = CUxC
>, (9)

where

C = C−1
y Cx, (10)

a matrix of sensitivity coefficients of dimension m×N .

6.3.1.5 Annex B contains a procedure for forming Uy. It is not recommended that Uy is obtained directly
by evaluating expression (10) and then expression (9); such a procedure is less stable numerically.

6.3.2 Examples

EXAMPLE 1 Set of pressures generated by a pressure balance

The pressure p generated by a pressure balance is defined implicitly by the equation

p =
mw (1− ρa/ρw) g`

A0 (1 + λp) (1 + αδθ)
, (11)

where mw is the total applied mass, ρa and ρw are, respectively, the densities of air and the applied masses, g` is the
local acceleration due to gravity, A0 is the effective cross-sectional area of the balance at zero pressure, λ is the distortion
coefficient of the piston-cylinder assembly, α is the coefficient of thermal expansion, and δθ is the deviation from a 20 ◦C
reference Celsius temperature [17].

Let p1, . . . , pq denote the generated pressures for, respectively, applied masses mw,1, . . . ,mw,q and temperature
deviations δθ1, . . . ,δθq.
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In terms of the general notation, N = 6 + 2q, m = q, X ≡ (A0, λ, α,δθ1,mw,1, . . . ,δθq,mw,q, ρa, ρw, g`)
>

and Y ≡ (p1, . . . , pq)
>.

X and Y are related by the measurement model

hj(Y ,X) = A0pj (1 + λpj) (1 + αδθj)−mw,j (1− ρa/ρw) g` = 0, j = 1, . . . , q. (12)

An estimate p̂j of pj is obtained by solving an equation of the form (12) given estimates of A0, λ, α, δθj , mw,j , ρa, ρw

and g`. However, the resulting estimates have associated covariances because they all depend on the measured
quantities A0, λ, α, ρa, ρw and g`.

The covariance matrixUy of dimension q×q associated with y ≡ (p̂1, . . . , p̂q)
> is evaluated from expression (8), where Cy

is the sensitivity matrix of dimension q× q containing the partial derivatives ∂h`/∂Yj , ` = 1, . . . , q, j = 1, . . . , q, and Cx

is the matrix of dimension q × (6 + 2q) containing the partial derivatives ∂h`/∂Xi, ` = 1, . . . , q, i = 1, . . . , 6 + 2q, both
evaluated at X = x and Y = y, and Ux is the covariance matrix of dimension (6 + 2q)× (6 + 2q) associated with x.

NOTE 1 A measurement function [giving Yj (≡ pj) explicitly as a function of X] can be determined in this case as
the solution of a quadratic equation. Such a form is not necessarily numerically stable. Moreover, measurement models
involving additional, higher-order powers of p are sometimes used [9]. Determination of an explicit expression is not
generally possible in such a case.

NOTE 2 There is more than one way to express the measurement model (12). For instance, in place of the form (12),
the model based on equating to zero the difference between the left- and right-hand sides of model (11) could be used.
The efficiency and stability of the numerical solution of the measurement model depends on the choice made.

NOTE 3 More complete models of the pressure generated by a pressure balance can also be considered [17], which
include, for example, a correction to account for surface tension effects.

NOTE 4 Not all the input quantities appear in each equation, with the jth equation involving
only A0, λ, α, δθj , mw,j , ρa, ρw and g`.

EXAMPLE 2 Reflection coefficient measured by a microwave reflectometer (approach 2)

Another approach to example 2 given in 6.2.2 is to relate the input quantity X ≡ (aR, aI , bR, bI , cR, cI ,WR,WI )> and
the output quantity Y ≡ (ΓR,ΓI )> using the bivariate measurement model

h1(Y ,X) = 0, h2(Y ,X) = 0, (13)

where h1(Y ,X) and h2(Y ,X) are, respectively, the real and imaginary parts of

(cW + 1)Γ − (aW + b) .

An advantage of this approach is that the calculation of derivatives and thence sensitivity coefficients is more straight-
forward.

An estimate y ≡ (Γ̂R, Γ̂I )> of the (complex) reflection coefficient is given by settingX = x in equations (13) and solving
them numerically.

The covariance matrix Uy of dimension 2 × 2 associated with y is evaluated from expression (8), where Cy is the
sensitivity matrix of dimension 2 × 2 containing the partial derivatives ∂h`/∂Yj , ` = 1, 2, j = 1, 2, and Cx is the
sensitivity matrix of dimension 2 × 8 containing the partial derivatives ∂h`/∂Xi, ` = 1, 2, i = 1, . . . , 8, both evaluated
at X = x and Y = y, and Ux is the covariance matrix of dimension 8× 8 associated with x.

EXAMPLE 3 Reflectometer calibration

The calibration of a reflectometer (example 2 of 6.2.2) is typically undertaken by measuring values W of the uncorrected
reflection coefficient corresponding to a number of standards with reflection coefficients Γ . Often, three standards are
used, giving the three (complex) simultaneous equations

(cW j + 1)Γ j − (aW j + b) = 0, (14)

for j = 1, 2, 3. Separation of these equations into real and imaginary parts gives rise to six simultaneous linear equations
that are solved for estimates of the real and imaginary parts of the calibration coefficients a, b and c given estimates
of the real and imaginary parts of the uncorrected reflection coefficients W j and of the reflection coefficients Γ j for the
standards.

In terms of the general notation, N = 12, m = 6,X ≡ (W1,R,W1,I,Γ1,R,Γ1,I,W2,R,W2,I,Γ2,R,Γ2,I,W3,R,W3,I,Γ3,R,Γ3,I)
>

and Y ≡ (aR, aI , bR, bI , cR, cI)
>.
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The input and output quantities are related by a multivariate measurement model, where, for j = 1, 2, 3, h2j−1(Y ,X)
and h2j(Y ,X) are, respectively, the real and imaginary parts of the left-hand side of expression (14).

An estimate y ≡ (âR, âI , b̂R, b̂I , ĉR, ĉI)
> of the (complex) calibration coefficients is given by using the estimates of W j

and Γ j in equations (14) and solving these equations numerically.

The covariance matrix Uy of dimension 6 × 6 associated with y is evaluated from expression (8), where Cy is the
sensitivity matrix of dimension 6 × 6 containing the partial derivatives ∂h`/∂Yj , ` = 1, . . . , 6, j = 1, . . . , 6, and Cx is
the sensitivity matrix of dimension 6 × 12 containing the partial derivatives ∂h`/∂Xi, ` = 1, . . . , 6, i = 1, . . . , 12, both
evaluated at X = x and Y = y, and Ux is the covariance matrix of dimension 12× 12 associated with x.

NOTE 1 If a computer system capable of operating with complex quantities is available, separation of these equations
into real and imaginary parts is unnecessary. The equations can be solved “directly” for a, b and c .

NOTE 2 The jth equation involves only the four input quantities Wj,R, Wj,I, Γj,R and Γj,I.

6.4 Propagation of uncertainty for models involving complex quantities

Annex A covers the algebraically efficient determination of the partial derivatives of first order of complex mul-
tivariate measurement functions. These derivatives are needed in a particularization of the law of propagation
of uncertainty to such models. The treatment can be extended to complex multivariate measurement models
in general.

EXAMPLE Reflection coefficient measured by a microwave reflectometer (approach 3)

Consider again example 2 given in 6.2.2.

The complex output quantity Y ≡ Γ is related to the complex input quantity X = (X1, . . . ,X4)> ≡ (a,b,c,W )> by
the measurement model (5). Using annex A, Cx, a sensitivity matrix of dimension 2× 8, is given by evaluating

CX =
[
Ca Cb Cc CW

]
,

with

Ct =M

(
∂Γ

∂t

)
, t ≡ a,b,c,W ,

at the estimate x of X. For instance, since

∂Γ

∂b
=

1

cW + 1
, (15)

the further use of annex A gives

Cb =

[
QR −QI

QI QR

]
,

where QR and QI denote the real and imaginary parts, respectively, of the right-hand side of expression (15).

The covariance matrix Uy of dimension 2× 2 associated with y ≡ Γ̂ , where

Uy =

[
u(Γ̂R, Γ̂R) u(Γ̂R, Γ̂I )

u(Γ̂I , Γ̂R) u(Γ̂I , Γ̂I )

]
≡
[

u2(Γ̂R) u(Γ̂R, Γ̂I )

u(Γ̂I , Γ̂R) u2(Γ̂I )

]
,

is evaluated from expression (A.1) of annex A, where Ux is the covariance matrix of dimension 8× 8 associated with x.

6.5 Coverage region for a vector output quantity

6.5.1 General

6.5.1.1 In electrical metrology, for example, it is appropriate to treat a vector output quantity as a single
entity and in dealing with summaries of the joint probability distribution for this quantity to maintain as much
information as possible.
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6.5.1.2 Given an estimate y of the output quantity Y = (Y1, . . . , Ym)>, its associated covariance matrix Uy
and a coverage probability p, it is required to specify a region RY in m-dimensional space that contains Y with
probability p.

6.5.1.3 If y andUy constitute the only available information about Y , according to the principle of maximum
entropy the Gaussian PDF N(y, Uy) is used to describe the state of knowledge of Y [JCGM 101:2008 6.4.8].

NOTE This choice of PDF is consistent, within the GUM uncertainty framework, with the characterization of a single
scalar output quantity Y by a univariate Gaussian PDF when the associated degrees of freedom is infinite.

6.5.1.4 In general, once the PDF for Y is established, either the coverage probability for a specified coverage
region or a coverage region for a specified coverage probability can be determined. Doing so is straightforward
for a Gaussian PDF (see 6.5.2, 6.5.3 and 6.5.4). For other PDFs, a numerical method such as a Monte Carlo
method (see 7) is helpful in obtaining approximate solutions that are acceptable for practical purposes.

6.5.1.5 The determination of a coverage region for a bivariate quantity (see 6.5.2) is used to motivate the
treatment for the more general multivariate case (see 6.5.3). Consideration is also given to the determination
of a coverage region for a quantity representing the average of a set of indication values regarded as random
draws made independently from a multivariate Gaussian distribution (see 6.5.4).

6.5.2 Bivariate case

6.5.2.1 The problem of specifying bivariate coverage regions illustrates the aspects that distinguish the
determination of multivariate coverage regions from the univariate case. Consider a point Y = (Y1, Y2)> in the
plane with rectangular co-ordinates Y1 (abscissa) and Y2 (ordinate). Both co-ordinates of Y are measured with
the same calibrated instrument. The information about Y constitutes estimates y1 and y2 of the co-ordinates,
standard uncertainties u(y1) and u(y2) associated with the estimates, as well as the covariance u(y1, y2) due to
the use of the same instrument in obtaining the estimates.

6.5.2.2 In the context of the GUM uncertainty framework, as there is no other information, the
joint PDF gY1,Y2

(η1, η2) characterizing Y is the bivariate Gaussian PDF N(y, Uy) (see 6.5.1.3) with

y =
[
y1

y2

]
, Uy =

[
u2(y1) u(y1, y2)
u(y2, y1) u2(y2)

]
.

6.5.2.3 Two particular coverage regions are considered:

a) An ellipse centred at y [19, page 38]:

(η − y)>Uy−1(η − y) = k2
p, (16)

with kp a constant determined such that the area under the PDF over the elliptical region is equal to p.
With this approach, the mutual dependence of Y1 and Y2 is taken into account.

When Y is characterized by a (bivariate) Gaussian probability distribution, the quantity

(Y − y)>Uy−1(Y − y) (17)

is characterized by a chi-squared distribution with two degrees of freedom. It follows that k2
p is given by

an upper percentage point of this chi-squared distribution, and satisfies

p = Pr(χ2
2 ≤ k2

p),

where χ2
2 has a chi-squared distribution with two degrees of freedom. For the coverage

probability p = 0.95, kp = 2.45 (see 6.5.3);
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b) A rectangle centred at y with sides parallel to the axes and equal to the lengths of separately determined
coverage intervals for Y1 and Y2. The coverage interval for Y1 is determined from the PDF for Y1 given by
marginalization:

gY1
(η1) =

∫ ∞
−∞

gY1,Y2
(η1, η2) dη2, (18)

irrespective of the state of knowledge of Y2, and similarly for the coverage interval for Y2. The coverage
intervals yj ± kqu(yj) are determined for coverage probability

q = 1− (1− p)/2 = (1 + p)/2. (19)

This rectangle constitutes a coverage region for Y corresponding to a coverage probability of at least p [5].

When Y is characterized by a (bivariate) Gaussian probability distribution, the marginal distribution (18)
for Y1 is Gaussian as is that for Y2. It follows that kq is given by an upper percentage point of the standard
Gaussian distribution, and satisfies

q = Pr(|Z| ≤ kq),

where Z has the standard Gaussian distribution N(0, 1). For the coverage probability p = 0.95, the coverage
intervals are yj ± kqu(yj), for j = 1, 2, with q = 0.975 and kq = 2.24 (see 6.5.3).

NOTE 1 In the context of the GUM uncertainty framework, the elliptical coverage region given in a) is the
smallest 100p% coverage region.

NOTE 2 When Y1 and Y2 are mutually independent, q in expression (19) can be replaced by q = p1/2.

EXAMPLE 1 Consider a bivariate quantity Y characterized by the Gaussian probability distribution N(y,Uy), where

y =

[
0
0

]
, Uy =

[
2.0 0.0
0.0 1.0

]
.

Figure 3 (left) shows 95 % elliptical and rectangular coverage regions for Y , obtained as in a) and b). Also shown
are 1 000 points representing random draws from this probability distribution. The ellipse is the smallest coverage region
for the stipulated coverage probability. 950 of the 1 000 points are contained within the elliptical coverage region, which
has area 26.6 unit2, and 953 within the rectangular region, which has area 28.4 unit2.

EXAMPLE 2 Consider a bivariate quantity Y characterized by the Gaussian probability distribution N(y,Uy), where

y =

[
0
0

]
, Uy =

[
2.0 1.9
1.9 2.0

]
.

Figure 3 (right) shows 95 % elliptical and rectangular coverage regions for Y , obtained as in a) and b). Unlike example 1,
the component quantities Y1 and Y2 of Y are (positively) correlated. 957 of the 1 000 points are contained within the
elliptical coverage region, which has area 11.8 unit2, and 972 within the rectangular region, which has area 40.1 unit2,
indicating that the coverage probability for the rectangular region exceeds 0.95. The rectangular region, whose shape does
not reflect the correlated component quantities and the distribution of the randomly drawn points, might be considered
inappropriate as a coverage region for Y . A rectangle with sides parallel to the axes of the ellipse would have smaller area
and might be considered more appropriate, but might be inconvenient since it would be expressed in terms of variables
that would be artificial in terms of the application.

6.5.2.4 Further examples of coverage regions for the output quantities of bivariate measurement models are
given in clause 9.

6.5.3 Multivariate case

For more than two quantities, coverage regions are no longer easily visualized, but can be constructed in an anal-
ogous manner to those described in a) and b) of 6.5.2.3 for the bivariate case. A region RY in the m-dimensional
space of the output quantity Y = (Y1, . . . , Ym)> is required such that the probability that Y lies in RY is equal
to the stipulated coverage probability p. The following two forms of RY , analogous to those described in a)
and b) of 6.5.2.3, can be considered:
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Figure 3 — Elliptical and rectangular coverage regions for a bivariate quantity Y characterized by a

Gaussian probability distribution for which the component quantities Y1 and Y2 are mutually

independent, and (right) correlated (6.5.2.3 examples 1 and 2)

a) A hyper-ellipsoid (or multivariate ellipse) in m dimensions given by expression (16).

When Y is characterized by a (multivariate) Gaussian probability distribution, the quantity (17) is char-
acterized by a chi-squared distribution with m degrees of freedom. It follows that k2

p is given by an upper
percentage point of this chi-squared distribution, and satisfies

p = Pr(χ2
m ≤ k2

p),

where χ2
m has a chi-squared distribution with m degrees of freedom. Table 1 gives values for the coverage

factor kp for the coverage probability p = 0.95 and m jointly evaluated Gaussian quantities for a selection
of values of m.

b) A hyper-rectangle (or multivariate rectangle) in m dimensions centered at y with sides equal to the lengths
of separately determined coverage intervals for Yj , j = 1, . . . ,m. The coverage intervals are determined
for coverage probability q = 1 − (1 − p)/m. This hyper-rectangle constitutes a coverage region for Y
corresponding to a coverage probability of at least p [5]. The coverage interval for each Yj is calculated
following marginalization.

When Y is characterized by a (multivariate) Gaussian probability distribution, the marginal distribution
for each Yj is Gaussian. It follows that the coverage factor kq is given by an upper percentage point
of the standard Gaussian distribution as in b) of 6.5.2.3. Table 2 gives values for kq for the coverage
probability p = 0.95 and m jointly evaluated Gaussian quantities for a selection of values of m.

NOTE 1 For the univariate case (m = 1), expression (16) reduces to

(η − y)2 = k2
pu

2
y,

giving

η = y ± kpuy,

the endpoints of a coverage interval for Y . For the coverage probability p = 0.95, kp = 1.96 (table 1).

NOTE 2 When the Yj are mutually independent, q can be replaced by q = p1/m.

6.5.4 Coverage region for the expectation of a multivariate Gaussian distribution

Consider n vectors y1, . . . , yn, each of dimension m × 1, with n > m, corresponding to repeated indication
values of a multivariate quantity Y = (Y1, . . . , Ym)>. Suppose y1, . . . , yn can be regarded as realizations of

22 c© JCGM 2011— All rights reserved



JCGM 102:2011

Table 1 — Coverage factors for hyper-ellipsoidal coverage regions corresponding to coverage

probability p = 0.95 (6.5.2 and 6.5.3)

m kp m kp m kp m kp

1 1.96 6 3.55 11 4.44 20 5.60
2 2.45 7 3.75 12 4.59 25 6.14
3 2.80 8 3.94 13 4.73 30 6.62
4 3.08 9 4.11 14 4.87 40 7.47
5 3.33 10 4.28 15 5.00 50 8.22

Table 2 — As table 1, but for hyper-rectangular coverage regions (6.5.2 and 6.5.3)

m kq m kq m kq m kq

1 1.96 6 2.64 11 2.84 20 3.02
2 2.24 7 2.69 12 2.87 25 3.09
3 2.39 8 2.73 13 2.89 30 3.14
4 2.50 9 2.77 14 2.91 40 3.23
5 2.58 10 2.81 15 2.94 50 3.29

independent random vectors Y 1, . . . , Y n, each characterized by a multivariate Gaussian probability distribution
with expectation µ and covariance matrix Σ . Define the average and covariance matrix

A =
1
n

(Y 1 + · · ·+ Y n), V =
1
n

[(Y 1 −A)(Y 1 −A)> + · · ·+ (Y n −A)(Y n −A)>],

of dimensions m× 1 and m×m, respectively. Then, the random variable

n−m
m

(A− µ)>V −1(A− µ)

has an Fm,n−m distribution [19, Corollary 3.5.2.1], the so-called Fisher-Snedecor distribution with m and n−m
degrees of freedom.

NOTE The counterpart of this result for a univariate quantity is as follows: for independent random
variables Y1, . . . , Yn, each characterized by a univariate Gaussian probability distribution with expectation µ and
variance σ2, (n− 1)1/2(A− µ)/S has a t-distribution with n− 1 degrees of freedom, where now

A =
1

n
(Y1 + · · ·+ Yn), S2 =

1

n
[(Y1 −A)2 + · · ·+ (Yn −A)2].

EXAMPLE Consider n = 12 repeated indication values in the form of pairs, representing measured values of the volume
fractions of microcline (A1) and biotite (A2) in one thin section cut from G–2 granite [4, 25]. Figure 4 shows these pairs
as dots, together with a 95 % elliptical coverage region for the expectation of a quantity A of dimension 2 × 1. The
expectation and covariance matrix for the indication values are

a =

[
27.0
6.2

]
, v =

[
1.202 −0.396
−0.396 0.381

]
.

The 95th percentile of the F2,10 distribution is 4.10. A 95 % coverage region for A is the ellipse with equation

(A− a)>v−1(A− a) = 4.10× 2

12− 2
.

The small number of indication values prevents any meaningful, critical assessment of whether the assumptions hold to
validate this coverage region.

7 Monte Carlo method

7.1 General

7.1.1 This clause gives information about the implementation of a Monte Carlo method (MCM) for the
propagation of distributions: see the procedure given in 7.1.7, which is presented diagrammatically in figure 5.
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Figure 4 — Twelve indication values in the form of pairs and 95 % elliptical coverage region for the

expectation taken as the average of these pairs (6.5.4 example)

7.1.2 MCM provides a general approach to obtain an approximate numerical representation G, say, of the
distribution function GY (η) for Y [18, page 75]. The heart of the approach is making repeated draws from
the PDFs for the Xi (or joint PDF for X) and the evaluation of the vector output quantity in each case.

7.1.3 Since GY (η) encodes all the information known about Y , any property of Y such as expectation,
variances and covariances, and coverage regions can be approximated using G. The quality of these calculated
results generally improves with the number of draws made.

7.1.4 The set of output quantity values obtained in 7.1.2 are taken as drawn independently from the joint
probability distribution for Y . Expectations, variances (and higher moments) and covariances can be determined
directly from these values. The determination of coverage regions requires these values to be analyzed in an
appropriate manner (see 7.7).

7.1.5 Let yr, for r = 1, . . . ,M , represent the output quantity values in 7.1.4. The expectation E(Y )
and variance V (Y ) of Y can be approximated using the yr. In general, the moments of Y (including E(Y )
and V (Y )) are approximated by the moments of these values. Let My0

denote the number of yr for which
each component is no greater than the corresponding component of y0, any prescribed numerical vector of
dimension m× 1. The probability Pr(Y ≤ y0) is approximated by My0

/M . In this way, y1, . . . ,yM provide a
discrete representation of the distribution function GY (η).

7.1.6 G, the primary output from MCM, constitutes the matrix of dimension m×M given by

G = (y1, . . . ,yM ).

7.1.7 MCM as an implementation of the propagation of distributions when Y can be expressed explicitly in
terms of X, where M is provided in advance (see 7.8 otherwise), is shown diagrammatically in figure 5. MCM
can be stated as a step-by-step procedure:

a) select the number M of Monte Carlo trials to be made. See 7.2;

b) generate M vectors, by drawing randomly from the PDFs assigned to the input quantities Xi (or the
joint PDF for X), as realizations of the (set of N) Xi. See 7.3;

c) for each such vector, form the corresponding value of Y , yielding M vector output quantity values in all.
See 7.4;
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d) take the representation G of the distribution function for Y as the set of M vector output quantity values.
See 7.5;

e) use G to form an estimate y of Y and the covariance matrix Uy associated with y. See 7.6;

f) use G to form an appropriate coverage region for Y , for a stipulated coverage probability p. See 7.7.

NOTE Mathematically, the average of the M vector output quantity values is a realization of a random variable with
expectation E(Y ) and variance V (Y )/M . Thus, the closeness of agreement between this average and E(Y ) can be

expected to be proportional to M−1/2.

7.1.8 The effectiveness of MCM to determine y, Uy and a coverage region for Y depends on the use of
an adequately large value of M (step a) in 7.1.7). Guidance on obtaining such a value and generally on
implementing MCM is available [8]. Also see 7.2 and 7.8.

7.2 Number of Monte Carlo trials

7.2.1 A value of M , the number of Monte Carlo trials, i.e. the number of vector output quantity values,
needs to be selected. It can be chosen a priori, in which case there will be no direct control over the quality of
the numerical results provided by MCM. The reason is that the number of trials needed to provide these results
to a prescribed numerical tolerance will depend on the “shape” of the PDF for the output quantity and on the
coverage probability required. Also, the calculations are stochastic in nature, being based on random draws.

7.2.2 Because there is no guarantee that any specific pre-assigned number will suffice, a procedure that
selects M adaptively, i.e. as the trials progress, can be used. Subclause 7.8 provides such a procedure, a
property of which is that the number of trials taken is economically consistent with the expectation of achieving
a required numerical tolerance.

NOTE If the model is complicated, e.g. involving the solution of a finite-element model, because of large computing times
it may not be possible to use a sufficiently large value of M to obtain adequate distributional knowledge of the output
quantity. In such a case an approximate approach would be to regard gY (η) as Gaussian (as in the GUM) and proceed as
follows. A relatively small value of M , 50 or 100, for example, would be used. The average and covariance matrix of the
resulting M values of Y would be taken as y and Uy, respectively. Given this information, a Gaussian PDF N(y,Uy)
would be assigned to characterize the knowledge of Y [JCGM 101:2008 6.4.7] and a desired coverage region for Y
calculated. Although this use of a small value of M is inevitably less reliable than that of a large value in that it does
not provide an approximation to the PDF for Y , it does take account of model non-linearity.

7.3 Making draws from probability distributions

7.3.1 In an implementation of MCM, M vectors xr, r = 1, . . . ,M , are drawn from the PDFs gXi(ξi) for the
input quantities X1, . . . , XN . Draws would be made from the joint (multivariate) PDF gX(ξ) if appropriate.

7.3.2 Recommendations concerning the manner in which these draws can be obtained for the commonest
distributions, including the rectangular, Gaussian, t-distribution and multivariate Gaussian, are given in GUM
Supplement 1 [JCGM 101:2008 6.4; JCGM 101:2008 annex C]. It is possible to draw at random from any other
distribution [JCGM 101:2008 C.2]. Some such distributions could be approximations to distributions based on
Monte Carlo results from a previous uncertainty calculation [JCGM 101:2008 6.5; JCGM 101:2008 D].

7.3.3 A procedure to make draws form a further multivariate distribution, the multivariate t-distribution, is
described in 5.3.2.4.

NOTE For the results of MCM to be statistically valid, it is necessary that the pseudo-random number generators used
to draw from the distributions required have appropriate properties. Some tests of randomness of the numbers produced
by a generator are indicated in C.3.2 of GUM Supplement 1.
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Figure 5 — Propagation and summarizing stages of uncertainty evaluation using MCM to implement

the propagation of distributions when the vector output quantity can be expressed explicitly in terms

of the input quantities (7.1.7)
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7.4 Evaluation of the vector output quantity

7.4.1 The vector output quantity is evaluated for each of the M draws from the PDFs for the N input
quantities. Specifically, denote the M draws by x1, . . . ,xM , each of dimension N × 1, where the rth draw xr
contains x1,r, . . . , xN,r, with xi,r a draw from the PDF for Xi. When the measurement model is explicit the
vector output quantity values are

yr = f(xr), r = 1, . . . ,M.

NOTE Measurement function and derivative evaluations are made at the estimates of the input quantities when applying
the law of propagation of uncertainty using exact derivatives. Measurement function evaluations only are made when
applying the law of propagation of uncertainty using numerical (finite-difference) approximations to derivatives. These
evaluations are made, if the GUM recommendation [JCGM 100:2008 5.1.3 note 2] is adopted, at the estimates of the
input quantities and at points perturbed by u(xi) and −u(xi) from each individual estimate xi in turn. With MCM,
measurement function evaluations are made in the neighbourhood of these estimates, viz. at points that can be expected
to be up to several standard uncertainties away from these estimates. The fact that measurement function evaluations
are made at different points according to the approach used may raise issues regarding the numerical procedure used to
evaluate the function, e.g. ensuring its convergence (where iterative schemes are used) and numerical stability. The user
should ensure that, where appropriate, the numerical methods used to evaluate the measurement function are valid for
a sufficiently large region containing these estimates. Only occasionally would it be expected that this aspect is critical.

7.4.2 The necessary modifications are made to 7.4.1 if the Xi are not independent and hence a joint PDF is
assigned to them.

7.4.3 The necessary modifications are made to 7.4.1 if the measurement model is implicit. The vector output
quantity values yr are obtained as the solutions to the equations

h(yr,xr) = 0, r = 1, . . . ,M.

7.5 Discrete representation of the distribution function for the output quantity

A discrete representation of the distribution function for the vector output quantity is formed from the M values
of the vector output quantity obtained in 7.4. In general, this representation is a matrix G of dimension m×M
whose rth column is the rth value of the vector output quantity. For a univariate model, G is a row vector.

NOTE 1 The jth row of G provides a discrete representation of an approximation to the marginal distribution for Yj .

NOTE 2 G has a graphical interpretation for m = 1, 2, 3. Consider m = 2 and, for r = 1, . . . ,M , plot a point in
the Y1, Y2 plane having co-ordinates corresponding to the two elements in column r of G. For M sufficiently large, the
local density of points in any small region of the plane will be approximately proportional to the probability density
there.

NOTE 3 A variety of information can be deduced fromG, such as higher-order moments. However, only the expectation
and variance, used as an estimate of Y and an approximation to the associated covariance matrix, respectively, are to
be used as the basis for uncertainty propagation in a further stage of uncertainty evaluation [JCGM 100:2008 0.4] in the
context of the GUM uncertainty framework.

NOTE 4 If Y is to become a vector input quantity for a further uncertainty calculation, making random draws from
its probability distribution is readily carried out by drawing randomly from the yr, r = 1, . . . ,M , (or equivalently from
the columns of G) with equal probability [JCGM 101:2008 6.5].

7.6 Estimate of the output quantity and the associated covariance matrix

The average and covariance matrix,

ỹ =
1
M

(y1 + · · ·+ yM ), U ỹ =
1

M − 1
[(y1 − ỹ)(y1 − ỹ)> + · · ·+ (yM − ỹ)(yM − ỹ)>],

are taken, respectively, as an estimate y of Y and the covariance matrix Uy associated with y.

NOTE Irrespective of whether the measurement model is linear or non-linear, in the limit as M tends to infinity, ỹ
approaches in probability E(f(X)) when the latter exists.
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7.7 Coverage region for a vector output quantity

7.7.1 General

There are arbitrarily many 100p% coverage regions for Y . Three forms of coverage regions are given here.
They are considered to have practical value, but other coverage regions might sometimes be useful in particular
circumstances. Each form of coverage region addressed is based on G, namely, a set of M points yr randomly
drawn from the PDF for Y , such as obtained with a Monte Carlo method (see 7.5). The forms of coverage
regions considered are as follows:

a) Hyper-ellipsoidal coverage region, which will be close to the smallest coverage region for Y when to a good
approximation the PDF for Y is Gaussian;

b) Hyper-rectangular coverage region, which has a simple interpretation but is often pessimistically large;

c) Smallest coverage region, which in general does not have any particular geometric definition and is obtained
to a degree of approximation that depends on M .

7.7.2 Hyper-ellipsoidal coverage region

A 100p% hyper-ellipsoidal coverage region for Y is

(η − y)>Uy−1(η − y) = k2
p, (20)

where y specifies its location, Uy specifies its shape, and kp specifies its size. A procedure for determining such
a coverage region is as follows:

a) Transform the points yr, denoting the transformed points by ẙr, according to

ẙr = L−1(yr − y), r = 1, . . . ,M, (21)

where L is the lower triangular matrix of dimension m×m given by the Cholesky decomposition Uy = LL>;

b) Sort the transformed points ẙr according to increasing value of dr, where

d2
r = ẙ>r ẙr =

m∑
j=1

ẙ2
j,r, r = 1, . . . ,M ;

c) Use the sorted ẙr to determine the coverage factor kp such that a fraction p of the ẙr satisfies dr < kp;

d) Take the hyper-ellipsoid defined by equation (20) as the boundary of a 100p% coverage region for Y .

NOTE 1 This procedure is based on reference [1], where multidimensional data is sorted using the metric

(yr − a)>Σ−1(yr − a),

with a denoting a location statistic and Σ a dispersion statistic. The choice made here is a = y and Σ = Uy. The
procedure is also based on transforming the points so that the transformed points have a covariance matrix equal to
the identity matrix, and hence there is no correlation associated with the transformed points. The points can then be
sorted. The points yr, which can be regarded as a cluster of points centered on y, approximate the distribution for Y ,
as a consequence of the approach used to obtain them. A coverage region can be defined by the hyper-ellipsoid centred
on y that (just) contains 100p% of these yr.

NOTE 2 The extent to which the coverage region obtained is appropriate depends on the context. It might be inap-
propriate if the distribution of the points yr differed appreciably from a multivariate Gaussian PDF.

NOTE 3 The matrix L in step a) can be determined as in reference [13], for instance. See example.

NOTE 4 This procedure takes into account the mutual dependence between pairs of components of Y .
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NOTE 5 For a complicated measurement model, for example, involving a finite-element calculation, because of large
computing times it may not be possible to use a sufficiently large value of M to obtain adequate distributional knowledge
of the output quantity. In such a case an approximate approach would be to regard the distribution for Y as Gaussian
and proceed as follows. A relatively small value of M , say 50 or 100, would be used. The average and covariance matrix
of the resulting M values of Y would be taken as y and Uy, respectively. Given this information, a Gaussian PDF with
expectation y and covariance matrix Uy would be used to characterize the knowledge of Y , and a coverage region for Y
calculated accordingly. Although this use of a small value of M is inevitably less reliable than that of a large value in
that it does not provide an approximation to the PDF for Y , it does take account of model non-linearity. Table 1 gives
values of kp for coverage probability p = 0.95 as a function of m, the number of output quantities, under the assumption
that Y is Gaussian.

EXAMPLE Consider the measurement model

Y1 = X1 +X3, Y2 = X2 +X3, (22)

where the input quantities X1 and X2 are each assigned the Gaussian distribution N(0, 0.1), X3 is assigned the rectangular

distribution R(−(3× 1.9)1/2, (3× 1.9)1/2), and the quantities are (pairwise) independent. The expectations of the input
quantities Xi are xi = 0, i = 1, 2, 3, with associated variances u2(xi) = 0.1, i = 1, 2, and u2(x3) = 1.9. Then, as
in 6.5.2.3 example 2 , Y = (Y1, Y2)> has expectation and covariance matrix

y =

[
0
0

]
, Uy =

[
2.0 1.9
1.9 2.0

]
.

The ẙr in step a) are formed using L−1, where to three decimal places,

L =

[
1.414 1.344
0.000 0.442

]
, L−1 =

[
0.707 −2.151
0.000 2.265

]
.

Figure 6 (left) shows 1 000 points randomly drawn from the probability distribution for Y defined by the measurement
model (22) and the above Gaussian probability distributions for the input quantities Xi, i = 1, 2, 3. The 95 % elliptical
coverage region for Y based on characterizing Y by the bivariate Gaussian distribution N(y,Uy) (as in a) of 6.5.2.3)
is shown by a broken line. This region has area 11.8 unit2, kp = 2.45 and contains 968 of the 1 000 points. The elliptical
coverage region determined on the basis of the 1 000 draws (as in the above procedure) is shown by a solid line. This region
has area 10.6 unit2, kp = 2.33, that is, it is slightly smaller than the region obtained under the Gaussian assumption,
and, by construction, contains exactly 950 points.

The measurement model (22) is considered in more detail in clause 9, and further examples of coverage regions for the
output quantities in bivariate measurement models are also given in clause 9.

Figure 6 — Elliptical coverage regions based on 6.5.2.3 a) and 7.7.2, and (right) rectangular coverage

regions based on 6.5.2.3 b) and 7.7.3 (7.7.2 example and 7.7.3 example)

7.7.3 Hyper-rectangular coverage region

A 100p% hyper-rectangular coverage region for Y is

yj ± kqu(yj), j = 1, . . . ,m, (23)
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where y = (y1, . . . , ym)> specifies its location, u(y) = (u(y1), . . . , u(ym))> specifies its shape, and kq specifies
its size. A procedure for determining such a coverage region is as follows:

a) Transform the points yr according to expression (21), denoting the transformed points by ẙr, where L is
now the diagonal matrix of dimension m×m with diagonal elements u(y1), . . . , u(ym);

b) Rank the transformed points ẙr according to increasing value of dr, where now

dr = max
j=1,...,m

|̊yj,r|, r = 1, . . . ,M ;

c) Use the ranked ẙr to determine the coverage factor kq such that a fraction p of the ẙr satisfies dr < kq;

d) Take the hyper-rectangle defined by expression (23) as the boundary of a 100p% coverage region for Y .

NOTE With this approach, mutual dependence between pairs of components of Y is not taken into account.

EXAMPLE Figure 6 (right) shows the same 1 000 points as in figure 6 (left). The 95 % rectangular coverage region for Y
based on characterizing Yj , j = 1, 2, by the Gaussian distribution N(yj , u

2(yj)), and ignoring the correlation associated
with y1 and y2 (as in b) of 6.5.2.3), is shown by a broken line. This region has area 40.1 unit2, kq = 2.24 and contains
all 1 000 points. The rectangular coverage region determined on the basis of the 1 000 draws (as in the above procedure)
is shown by a solid line. This region has area 25.5 unit2, kq = 1.78, that is, it is smaller than the region obtained under
the Gaussian assumption, and, by construction, contains exactly 950 points.

7.7.4 Smallest coverage region

A procedure that provides an approximation to the smallest 100p% coverage region is as follows:

a) Construct a (hyper-)rectangular region in the space of the output quantities;

b) Subdivide this rectangular region into a mesh of small rectangles;

c) Assign each output quantity value to the small rectangle containing it;

d) Use the fraction of output quantity values assigned to each rectangle as the approximate probability that Y
lies in that rectangle;

e) List the rectangles in terms of decreasing probability;

f) Form the cumulative sum of probabilities for these listed rectangles, stopping when this sum is no smaller
than p;

g) Take the corresponding set of rectangles as defining the smallest coverage region.

NOTE 1 The procedure is based on reference [20] and consists of subdividing the space of the output quantities into a
number of small (hyper-)rectangles, approximating the probability that Y lies in each small rectangle by the proportion
of output quantity values assigned to that rectangle, and approximating the smallest coverage region by the smallest set
of such rectangles that contain 100p% of the M output quantity values.

NOTE 2 The rectangular region in step a) should just contain all the yr.

NOTE 3 The fineness of the mesh in b) influences the approximate coverage region produced.

NOTE 4 The quality of the approximation generally improves with M . To achieve a sufficiently good approximation,
particularly for a number of output quantities larger than about two or three, might necessitate a very large value of M .

NOTE 5 The region so obtained might be disjointed, particularly if M is insufficiently large.

NOTE 6 Step d) sets the probability for each rectangle to be the relative frequency of output quantity values assigned
to that rectangle. A coverage region that is less disjointed and having a smoother boundary would be expected to be
obtained if step d) were replaced by the use of a more sophisticated approximation to the probability density [23].

30 c© JCGM 2011— All rights reserved



JCGM 102:2011

NOTE 7 Some of the approximate probabilities in step d) may be equal in value. In such a case the order of the items
in the list in step e) is not unique. As a consequence a different approximate coverage region might be obtained for each
possible ordering.

NOTE 8 In the bivariate case (m = 2), steps a) to d) are also carried out in the initial stages of a typical contouring
algorithm used in visualizing an approximation to the PDF for Y (see 9.1.6).

EXAMPLE Consider the same problem as in 7.7.2 example. Figure 7 shows approximations to the 95 % smallest coverage
region, obtained using the procedure in this subclause, based on a set of small rectangles forming a 10 × 10 mesh and
(right) a 100 × 100 mesh. The coverage region in figure 7 (left) relates to 1 000 points drawn randomly from the PDF
for Y , has area 11.3 unit2 and contains 955 of the points. The coverage region in figure 7 (right) relates to 1 000 000
points drawn randomly from the PDF for Y , has area 9.4 unit2 and contains 950 074 of the points. For comparison, in
each figure, the 95 % elliptical coverage region for Y based on the procedure in 7.7.2 is shown by a solid line.

Figure 7 — Elliptical coverage regions based on 7.7.2 and approximations to the smallest coverage

region based on 7.7.4 for a 10× 10 mesh and 1 000 points drawn randomly from the PDF for Y , and

(right) for a 100× 100 mesh and 1 000 000 points (7.7.4 example)

7.8 Adaptive Monte Carlo procedure

7.8.1 General

7.8.1.1 The effectiveness of MCM to determine estimates y of the output quantities Y , the associated
covariance matrix Uy and a coverage region for Y depends on the use of an adequately large value for the
number M of Monte Carlo trials. A value for M can be chosen a priori as in 7.2. Alternatively, an adaptive
Monte Carlo procedure can be used that involves carrying out an increasing number of Monte Carlo trials until
the various results of interest have stabilized in a statistical sense. A numerical result is deemed to have stabilized
if twice the standard deviation associated with it is less than a stipulated numerical tolerance (see 7.8.2).

7.8.1.2 The objective of the adaptive procedure given in 7.8.3 is to provide

a) an estimate y = (y1, . . . , ym)> of Y ,

b) a vector u(y) = (u(y1), . . . , u(ym))> of standard uncertainties associated with the estimates,

c) a positive definite matrix Ry of dimension m×m of correlation coefficients rij = r(yi, yj) associated with
pairs of the estimates, and

d) a coverage factor kp defining a 100p% coverage region for Y in the form of a hyper-ellipsoid in m dimensions,

such that each of these values can be expected to meet a stipulated numerical tolerance.
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NOTE 1 By its stochastic nature, the procedure cannot be guaranteed to meet these tolerances.

NOTE 2 Generally, the larger is the coverage probability p, the larger is the number of Monte Carlo trials required to
determine kp for a given numerical tolerance.

NOTE 3 The standard uncertainties u(y) and correlation matrix Ry together determine the covariance matrix Uy

associated with the estimates y (see 3.21 note 3 and 7.8.2.4).

NOTE 4 When a coverage region is to be determined that is not in the form of a hyper-ellipsoid in m dimensions, a
test for stabilization can be made in terms of the parameters defining the region. For example, for a coverage region
in the form of a hyper-rectangle in m dimensions, a test could be made in terms of the coverage factor kq defining the
region and a numerical tolerance associated with kq. The procedure given in 7.8.3 is modified accordingly.

NOTE 5 When a coverage region is not required, an increasing number of Monte Carlo trials is undertaken until the
estimates y, associated standard uncertainties u(y) and correlation matrix Ry have stabilized.

NOTE 6 When dependencies exist among the output quantities, Ry may not be positive definite. See 9.4 (particularly
9.4.2.3 note 2) for an example.

7.8.2 Numerical tolerance associated with a numerical value

7.8.2.1 Let ndig denote the number of significant decimal digits regarded as meaningful in a numerical
value z. The numerical tolerance δ associated with z is given as follows:

a) express z in the form c× 10`, where c is an ndig decimal digit integer and ` an integer;

b) take

δ =
1
2

10`.

7.8.2.2 For j = 1, . . . ,m, the numerical tolerance δj used to test for stabilization of the estimate yj of Yj
and the standard uncertainty u(yj) associated with yj in the adaptive procedure of 7.8.3 is calculated in terms
of a number of significant decimal digits regarded as meaningful in the value of u(yj).

7.8.2.3 The numerical tolerance ρ used to test for stabilization of the matrixRy of correlation coefficients ri,j
associated with the estimate y is calculated in terms of a number of significant decimal digits in λmax, the largest
eigenvalue of Ry (see 3.21 note 3).

7.8.2.4 The matrix Ry would often be used in a subsequent uncertainty evaluation. Commonly, this evalu-
ation would relate to a scalar quantity Q expressed as some linear combination

Q = c1Y1 + · · ·+ cmYm = c>Y

of the Yi. Using

Uy = DyRyDy

(see 3.21 note 3), the standard uncertainty u(q) associated with the estimate

q = c>y

of Q is given by

u2(q) = c>Uyc = d>Ryd,

where

d = Dyc.
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7.8.2.5 The numerical accuracy of u(q) depends on that of Ry and d, the latter depending on Dy and
hence u(y) = (u1(y1), . . . , um(ym))>.

7.8.2.6 For subsequent uncertainty evaluations that are more complicated, such as involving a least squares
calculation using explicitly or implicitly the inverse of Uy, it would be necessary to utilize a different stabilization
test. For a least squares calculation, it would be appropriate to calculate ρ in 7.8.2.3 in terms of a number of
significant decimal digits in the smallest eigenvalue of Ry (also see 3.21 note 5): the sensitivity of the solution
to the least squares problem depends on the condition number λmax/λmin of Ry. Hence, in order to reduce
the number of Monte Carlo trials, a parametrization of that problem should be used that makes the condition
number as small as reasonably possible.

7.8.2.7 The numerical tolerance κp used to test for stabilization of the coverage factor kp is calculated in
terms of a number of significant decimal digits regarded as meaningful in the value kp.

7.8.2.8 For a subsequent uncertainty evaluation based on the use of G (see 7.5) as an approximation to the
distribution function for Y , it should be ensured that this discrete representation is adequate for the purpose,
especially when a coverage region is to be provided. Detailed advice on this aspect is beyond the scope of this
Supplement.

7.8.3 Adaptive procedure

A suggested practical approach, involving carrying out a sequence of applications of MCM, is as follows:

a) set ndig to an appropriate small positive integer (see 7.8.2);

b) set M = max(J, 104), where J is the smallest integer greater than or equal to 100/(1− p);

c) set h = 1, denoting the first application of MCM in the sequence;

d) carry out M Monte Carlo trials, as in 7.3 and 7.4;

e) use the M vector output quantity values y1, . . . ,yM so obtained to calculate y(h), u(y(h)), Ry(h) and k(h)
p

as an estimate of Y , the associated standard uncertainties, the associated correlation matrix and a coverage
factor for a 100p% coverage region, respectively, i.e. for the hth member of the sequence;

f) if h ≤ 10, increase h by one and return to step d);

g) for j = 1, . . . ,m, calculate the standard deviation syj associated with the average of the estimates
y

(1)
j , . . . , y

(h)
j of Yj , given by

s2
yj =

1
h(h− 1)

h∑
r=1

(y(r)
j − yj)

2, yj =
1
h

h∑
r=1

y
(r)
j ;

h) calculate the counterpart of this statistic for the components of u(y(h)) and for λmax and k
(h)
p ;

i) use all h×M model values available so far to form values for u(y), Ry and kp;

j) for j = 1, . . . ,m, calculate the numerical tolerances δj associated with u(yj) as in 7.8.2.1 and 7.8.2.2;

k) calculate the numerical tolerance ρ associated with the matrix Ry of correlation coefficients as in 7.8.2.1
and 7.8.2.3;

l) calculate the numerical tolerance κp associated with kp as in 7.8.2.1 and 7.8.2.7;
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m) if for any j = 1, . . . ,m, 2syj or 2su(yj) exceeds δj , or 2sλmax exceeds ρ, or 2skp exceeds κp, increase h by
one and return to step d);

n) regard the overall computation as having stabilized, and use all h × M vector output quantity values
obtained to calculate y, Uy and the coverage factor kp for a 100p% coverage region, as in 7.6 and 7.7.

NOTE 1 For (stochastic) convergence of the adaptive procedure, the expectation and covariance matrix of Y must
exist.

NOTE 2 The choice of M in step b) is arbitrary, but has been found suitable in practice.

NOTE 3 The initial use of ten applications of MCM with M trials in steps d) to f) helps to prevent premature
convergence of the procedure, and, moreover, makes the assumption, implied by note 6, more reasonable. A similar
change to the counterpart of this procedure when there is a single scalar output quantity [JCGM 101:2008 7.9.4] would
also improve the performance of the scheme there for some problems.

NOTE 4 In step g), yj is regarded as a realization of a random variable with standard deviation syj .

NOTE 5 The standard deviations formed in steps g) and h) tend to reduce in a manner proportional to h−1/2

(see 7.1.7 note).

NOTE 6 The factor 2 used in step m) is based on regarding the averages as realizations of Gaussian variables, and
corresponds to a coverage probability of approximately 95 %.

NOTE 7 Reference [28] considers improvements to the adaptive scheme of GUM Supplement 1 [JCGM 101:2008 7.9].

8 Validation of the GUM uncertainty framework using a Monte Carlo method

8.1 The (generalized) GUM uncertainty framework (GUF) can be expected to work well in many circum-
stances. However, it is not always straightforward to determine whether all the conditions for its application
hold [JCGM 101:2008 5.7, JCGM 101:2008 5.8]. Indeed, the degree of difficulty of doing so would typically be
considerably greater than that required to apply MCM, assuming suitable software were available [8]. Therefore,
since these circumstances cannot readily be tested, any cases of doubt should be validated. Since the domain
of validity for MCM is broader than that for the GUM uncertainty framework, it is recommended that both
the GUM uncertainty framework and MCM be applied and the results compared. Should the comparison be
favourable, the GUM uncertainty framework could be used on this occasion and for sufficiently similar problems
in the future. Otherwise, consideration should be given to using MCM or another appropriate approach instead.

8.2 Specifically, it is recommended that steps a) and b) below and the comparison process in 8.3 be carried
out:

a) apply the GUM uncertainty framework (see 6) to yield (i) an estimate yGUF of Y , (ii) the standard
uncertainties u(yGUF) associated with yGUF, (iii) the correlation matrix RyGUF associated with yGUF,
and (iv) the coverage factor kGUF

p defining a 100p% coverage region for Y in the form of a hyper-ellipsoid
in m dimensions;

b) apply the adaptive Monte Carlo procedure (see 7.8.3) to provide, similarly, yMCM, u(yMCM), RyMCM

and kMCM
p .

8.3 The objective of the comparison procedure is to determine whether the results provided by the GUM
uncertainty framework and MCM agree to within a stipulated numerical tolerance. The procedure is as follows:

a) set ndig to an appropriate small positive integer (see 7.8.2);

b) for j = 1, . . . ,m, calculate the numerical tolerances δj associated with u(yj) as in 7.8.2.1 and 7.8.2.2;

c) calculate the numerical tolerance ρ associated with the matrix Ry of correlation coefficients as in 7.8.2.1
and 7.8.2.3;
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d) calculate the numerical tolerance κp associated with kp as in 7.8.2.1 and 7.8.2.7;

e) compare the estimates, associated standard uncertainties and correlation coefficients, and coverage factors
obtained using the GUM uncertainty framework and MCM to determine whether the required number
of correct decimal digits in the results provided by the GUM uncertainty framework has been obtained.
Specifically, determine

dyj = |yGUF
j − yMCM

j |, j = 1, . . . ,m,

du(yj) = |u(yGUF
j )− u(yMCM

j )|, j = 1, . . . ,m,

dλmax = |λGUF
max − λMCM

max |,
dkp = |kGUF

p − kMCM
p |,

viz. the absolute differences of the respective numerical results. Then, if for all j = 1, . . . ,m, dyj and du(yj)

are no larger than δj , dλmax is no larger than ρ, and dkp is no larger than κp, the comparison is favourable
and the GUM uncertainty framework has been validated in this instance.

NOTE 1 The choice of 100p% coverage region will influence the comparison. Therefore, the validation applies for the
specified coverage probability p and coverage region only.

NOTE 2 In situations where a coverage region is not required, the test in step d) can be based instead on dyj , du(yj)

and dλmax only. In cases where a coverage region is determined that is not in the form of a hyper-ellipsoid in m dimensions,
a test can be made in terms of the parameters defining the region. For example, for a coverage region in the form of
a hyper-rectangle in m dimensions, a test can be made in terms of the coverage factor kq defining the region and a
numerical tolerance κq associated with kq.

NOTE 3 A sufficient number M of Monte Carlo trials should be performed in obtaining MCM results for the purpose
of validating those from the GUM uncertainty framework. It is recommended that the numerical tolerances set in the
adaptive procedure of 7.8 are no greater than one fifth of the respective numerical tolerances used in the validation
procedure [JCGM 101:2008 8.2]. Alternatively, the number of significant decimal digits set in the adaptive procedure
can be set to be one greater than the number of digits set in the validation procedure.

9 Examples

9.1 Illustrations of aspects of this Supplement

9.1.1 The first example (see 9.2) is a linear measurement model in which the output quantities of the
measurement model depend on a common effect and on effects that are different for the output quantities. This
is an example for which analytical solutions are available for some special cases.

9.1.2 The second example (see 9.3) is a non-linear measurement model concerning the transformation from a
Cartesian representation (in terms of real and imaginary parts) of a complex quantity to a polar representation
(in terms of magnitude and phase) of the quantity. This is an example for which analytical solutions are available
for some special cases [6].

9.1.3 The third example (see 9.4), constituting a further non-linear measurement model, is that in the GUM
concerned with the simultaneous measurement of resistance and reactance [JCGM 100:2008 H.2]. The example
illustrates the treatment of a series of simultaneous indication values of a vector quantity that have been obtained
independently.

9.1.4 The fourth example (see 9.5) is concerned with the measurement of Celsius temperature using a
resistance thermometer. The example illustrates the treatment of a univariate measurement model and a
multivariate measurement model.

9.1.5 Many of the figures used to illustrate the results for the examples are best viewed in colour. In the
figures showing contours, contours with a common colour correspond to the same contour value. The correspon-
dence between contours of the same colour for contour plots within the same figure is applied throughout this
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Supplement unless a statement is made to the contrary. When two or more figures are used to compare results,
such as those from the GUM uncertainty framework and a Monte Carlo method, the same axes are generally
used. There are some exceptions when the PDFs, etc. for the methods are very different.

9.1.6 Since the primary output from MCM is the set of M values of the vector quantity Y gathered in the
matrix G of dimension m ×M (see 7.1.6), it is often desirable to summarize them by an approximation to
the corresponding probability density function, and to depict this function by its contour lines. The figures in
this clause show such contour lines in cases where the output quantity is of dimension m = 2. The contour
lines should be drawn in ways that guarantee that, as the number M of draws from the probability distribution
of the output quantity grows large, they converge to the contours of the corresponding probability density
function: doing so requires appropriate smoothing [22, 24]. Some contour diagrams shown in this clause
are computed directly from an approximation to the corresponding probability density function. For others
an appropriate smoothing algorithm is applied and the resulting smoothed contours drawn. In one instance
(figure 10) unsmoothed and smoothed contours are shown to indicate the effect of the smoothing algorithm.

9.2 Additive measurement model

9.2.1 Formulation

This example (compare 7.7.2 example) considers the additive (linear) bivariate measurement model

Y1 = X1 +X3, Y2 = X2 +X3 (24)

for three different sets of PDFs gXi(ξi) assigned to the input quantities Xi, regarded as independent. The
measurement model has three input quantities X1, X2 and X3, with X3 representing an effect that is common
to the output quantities Y1 and Y2, and X1 and X2 effects that are different for Y1 and Y2. For the first set of
input PDFs (see 9.2.2), each gXi(ξi) is chosen to be a standard Gaussian distribution with Xi having expectation
zero and standard deviation unity. The second set of PDFs (see 9.2.3) is identical to the first, but gX3

(ξ3) is
a rectangular distribution, also with X3 having expectation zero and standard deviation unity. The third set
of PDFs (see 9.2.4) is identical to the second except that X3 has standard deviation three, representing a
dominant common effect.

9.2.2 Propagation and summarizing: case 1

9.2.2.1 Characterize each Xi by a standard Gaussian distribution. The estimates of the Xi

are xi = 0, i = 1, 2, 3, with associated standard uncertainties u(xi) = 1. The results obtained from the ap-
plication of the GUM uncertainty framework (see 6) and MCM (see 7) are summarized in table 3 and figures 8
to 10. Some results in the table are reported to four significant decimal digits in order to facilitate their
comparison.

Table 3 — Application of the GUM uncertainty framework (GUF) and MCM to the additive

model (24), with each Xi characterized by a standard Gaussian distribution (9.2.2)

Method M y1 y2 u(y1) u(y2) r(y1, y2) kp kq

GUF 0.000 0.000 1.414 1.414 0.500 2.45 2.24
MCM 1 × 105 0.003 0.005 1.412 1.408 0.498 2.45 2.22
MCM 1 × 106 0.000 0.000 1.416 1.415 0.500 2.45 2.21
MCM 1 × 107 0.000 0.000 1.414 1.414 0.500 2.45 2.21

Adaptive MCM 0.35× 106 0.001 −0.001 1.417 1.417 0.502 2.45 2.22
Adaptive MCM 0.45× 106 0.001 −0.001 1.416 1.414 0.501 2.45 2.21

9.2.2.2 The (generalized) GUM uncertainty framework gives the estimate y = (0, 0)> of Y . The covariance
matrix associated with this estimate is

Uy =
[

2 1
1 2

]
,
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obtained by applying formula (3), namely Uy =CxUxC
>
x, with

Ux =

 12 0 0
0 12 0
0 0 12

 , Cx =
[

1 0 1
0 1 1

]
.

The correlation coefficient associated with the estimates y1 and y2 (see 3.21) is r(y1, y2) = 0.5. 95 % coverage re-
gions for Y taking the forms of an ellipse and a rectangle are defined, respectively, by coverage factors kp = 2.45
(table 1) and kq = 2.24 (table 2). These results are summarized in row 1 (GUF) of table 3. In the con-
text of the GUM uncertainty framework, given the information available, Y is characterized by the bivariate
Gaussian PDF N(y,Uy).

9.2.2.3 The application of MCM with, respectively, M = 105, 106 and 107 trials gives the results summarized
in rows 2 to 4 (MCM) of table 3. The fourth and fifth numerical values of M (0.35× 106 and 0.45× 106) given
in rows 5 and 6 (Adaptive MCM) of the table are the numbers of trials taken by two applications of the adaptive
Monte Carlo procedure (see 7.8.3) with ndig, the number of significant decimal digits regarded as meaningful
in the numerical value of a result, set equal to three (see note 3 of 8.3). For the applications of the adaptive
procedure, it is required that all the results, i.e. y1, y2, u(y1), u(y2), r(y1, y2), kp and kq, have stabilized in a
statistical sense.

9.2.2.4 The PDF for Y obtained analytically is the bivariate Gaussian PDF N(y,Uy) with y and Uy given
in 9.2.2.2.

9.2.2.5 Figure 8 (left) shows contours of the bivariate Gaussian PDF for Y obtained from the GUM uncer-
tainty framework (or obtained analytically). The contours take the form of ellipses with equations

(η − y)>Uy−1(η − y) = k2

for various values of k. Figure 8 (right) shows contours of the approximation to the PDF for Y obtained from
the application of MCM with M = 107 trials. The approximate PDF is described by the numbers of model
values from the Monte Carlo calculation contained within each cell of a (suitably large) mesh defined on the
domain of Y , with each number scaled (by the same scaling factor) so that the volume under the PDF (regarded
as constant over each cell) is unity. A contouring algorithm is used to determine contours from this description
of the approximate PDF for the same values of k used to define the ellipses in figure 8 (left). The contours in
figure 8 (right) are not smoothed (see 9.1.6).

NOTE Figure 8 and subsequent contour plots include a colour bar indicating the contour heights according to a colour
code.

9.2.2.6 Figure 9 shows the marginal PDF N(y1, u
2(y1)) for Y1 resulting from the GUM uncertainty frame-

work. It also shows the approximate PDF provided by MCM with M = 107 trials. The approximation is
displayed as a scaled frequency distribution (histogram) of the model values for Y1 from the Monte Carlo cal-
culation. These two PDFs are almost indistinguishable by eye. Comparable results would be obtained for Y2.

9.2.2.7 Figure 10 (left) shows the contours of the approximation to the PDF for Y provided by MCM
with 0.45× 106 trials. The contours are considerably less “smooth” than those in figure 8 (right) obtained from
a much larger number of trials. Figure 10 (right) provides an instance of contour smoothing (see 9.1.6).

NOTE A large value for the number M of Monte Carlo trials, and a fine discretization of the domain of Y , are generally
needed to ensure that the contours in a graphical representation of the approximate PDF for Y obtained using MCM are
smooth. A similar effect arises for a single scalar output quantity, where a large value for M and many classes (or bins),
are generally needed to ensure that the approximate PDF displayed as a histogram (or scaled frequency distribution) is
smooth.

9.2.2.8 The validation procedure of clause 8 is applied to validate the results obtained from the GUM
uncertainty framework against those from the two applications of the adaptive Monte Carlo calculation. The
procedure is applied with ndig, the number of significant decimal digits regarded as meaningful in the numerical
value of a result, set equal to two. In this case, the numerical tolerances associated with the results are,
respectively,

δ1 = δ2 = 0.05, ρ = 0.05, κp = κq = 0.05.
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The results obtained from the GUM uncertainty framework were validated in both instances. Excepting kq,
agreement between the results would be expected because all the conditions hold for the application of
the GUM uncertainty framework. The evaluation of kq in the GUM uncertainty framework does not take
account of the mutual dependence between Y1 and Y2 (see 6.5.2.3). Nevertheless, the values for kq obtained
agree to the required number of significant decimal digits.

Figure 8 — Contours of the joint PDFs for the output quantities in the additive measurement

model (24) provided by the GUM uncertainty framework and (right) MCM without contour

smoothing, where the input quantities in the measurement model are characterized by standard

Gaussian distributions (9.2.2)

Figure 9 — As figure 8, but showing the marginal PDF for Y1 (9.2.2)

9.2.3 Propagation and summarizing: case 2

9.2.3.1 This case is identical to that in 9.2.2 except that X3 is characterized by a rectangular distribution
so that X3 has an expectation of zero and a standard deviation of unity. Again, the estimates of the Xi

are xi = 0, i = 1, 2, 3, with associated standard uncertainties u(xi) = 1. The results from the application of
the GUM uncertainty framework (see 6) and MCM (see 7) are summarized in table 4 and figures 11 and 12.

9.2.3.2 The GUM uncertainty framework provides exactly the same (bivariate Gaussian) PDF for Y
(figure 11, left) when the PDF for X3 is Gaussian (as in 9.2.2) or rectangular (as here), because the expec-
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Figure 10 — Contours of the joint PDF for the output quantities in the additive measurement

model (24) provided by the adaptive MCM procedure and (right) with contour smoothing, where the

input quantities in the model are characterized by standard Gaussian distributions (9.2.2)

Table 4 — As table 3, except that X3 is characterized by a rectangular distribution (9.2.3)

Method M y1 y2 u(y1) u(y2) r(y1, y2) kp kq

GUF 0.000 0.000 1.414 1.414 0.500 2.45 2.24
MCM 1 × 105 0.008 0.010 1.414 1.410 0.500 2.38 2.15
MCM 1 × 106 0.001 0.001 1.414 1.414 0.499 2.38 2.15
MCM 1 × 107 0.000 0.000 1.414 1.414 0.500 2.38 2.15

Adaptive MCM 0.36× 106 0.000 −0.002 1.413 1.414 0.500 2.38 2.15
Adaptive MCM 0.35× 106 0.002 −0.001 1.418 1.415 0.502 2.38 2.15
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tations of the input quantities are identical, as are the standard deviations, in the two cases. Because the
measurement model depends linearly on the input quantities, there is no approximation involved in the appli-
cation of the law of propagation of uncertainty to obtain an estimate y of Y and the associated covariance
matrix Uy. However, the PDF provided by the GUM uncertainty framework is not the same as the analytical
solution, since the latter depends on the distribution used to characterize X3, and not only the expectation and
standard deviation of the quantity.

9.2.3.3 Figure 11 (right) and figure 12 show the influence of the distribution used to characterize X3 on the
approximations to, respectively, the PDF for Y and the marginal PDF for Y1 obtained from MCM.

9.2.3.4 The validation procedure of clause 8 is again applied (see 9.2.2). In this case, values
for y1, y2, u(y1), u(y2) and r(y1, y2) obtained from the GUM uncertainty framework were validated against
those obtained from the two applications of the adaptive Monte Carlo procedure, but the values for kp and kq
were not validated.

Figure 11 — Counterpart of figure 8 for an input quantity X3 characterized by a rectangular

distribution (9.2.3)

Figure 12 — Counterpart of figure 9 for an input quantity X3 characterized by a rectangular

distribution (9.2.3)
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9.2.4 Propagation and summarizing: case 3

9.2.4.1 Consider the example of 9.2.3, except that X3 now has a standard deviation of three rather than
unity. The results from the application of the GUM uncertainty framework (see 6) and MCM (see 7) are
summarized in table 5 and figures 13 and 14.

Table 5 — As table 4, except that X3 has a standard deviation of three (9.2.4)

Method M y1 y2 u(y1) u(y2) r(y1, y2) kp kq

GUF 0.000 0.000 3.162 3.162 0.900 2.45 2.24
MCM 1 × 105 0.023 0.025 3.159 3.157 0.900 2.28 1.87
MCM 1 × 106 0.003 0.002 3.161 3.161 0.900 2.28 1.87
MCM 1 × 107 0.000 0.000 3.162 3.161 0.900 2.28 1.87

Adaptive MCM 1.49× 106 0.002 0.002 3.163 3.162 0.900 2.28 1.87
Adaptive MCM 1.85× 106 0.001 0.001 3.163 3.162 0.900 2.28 1.87

9.2.4.2 The GUM uncertainty framework gives the estimate y = (0, 0)> of Y . The covariance matrix
associated with this estimate is

Uy =
[

10 9
9 10

]
,

obtained by applying formula (3) with

Ux =

 12 0 0
0 12 0
0 0 32

, Cx =
[

1 0 1
0 1 1

]
.

The correlation coefficient associated with the estimates y1 and y2 is r(y1, y2) = 0.9. 95 % coverage regions
for Y taking the forms of an ellipse and a rectangle are defined, respectively, by coverage factors kp = 2.45
(table 1) and kq = 2.24 (table 2). These results are summarized in row 1 (GUF) of table 5. In the context of
the GUM uncertainty framework, given the information available about Y , Y is characterized by the bivariate
Gaussian PDF N(y,Uy), the contours for which are shown in figure 13 (left). There is a stronger correlation
between Y1 and Y2 in this example compared to the earlier examples because the relative contribution of the
common effect X3 to the uncertainties associated with the estimates of Y1 and Y2 is greater.

9.2.4.3 Figure 13 (right) and figure 14 show the greater influence (compared to the results of 9.2.3) of the dis-
tribution used to characterize X3 on the approximations to, respectively, the PDF for Y and the marginal PDF
for Y1 obtained from MCM.

9.2.4.4 The validation procedure of clause 8 is again applied (see 9.2.2 and 9.2.3). In this case, values
for y1, y2, u(y1), u(y2) and r(y1, y2) obtained from the GUM uncertainty framework were validated against
those obtained from the two applications of the adaptive Monte Carlo procedure, but the values for kp and kq
were not validated. The value of kp obtained from the GUM uncertainty framework is about 7 % bigger than
that obtained from MCM, and the value of kq about 20 % bigger.

9.3 Co-ordinate system transformation

9.3.1 Formulation

9.3.1.1 Consider a complex quantity Z represented in Cartesian form

X1 + iX2,

where X1 ≡ ZR and X2 ≡ ZI are, respectively, the real and imaginary parts of Z, or in polar form

R(cos Θ + i sin Θ) = ReiΘ ,
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Figure 13 — Counterpart of figure 11 for an input quantity X3 with a standard deviation of three (9.2.4)

Figure 14 — Counterpart of figure 12 for an input quantity X3 with a standard deviation of three (9.2.4)
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where R and Θ are, respectively, the magnitude and phase of Z. This example considers the transformation
from Cartesian to polar representations of Z described by the bivariate measurement model

Y 2
1 = X2

1 +X2
2 , tanY2 = X2/X1, (25)

with input quantity X = (X1, X2)> ≡ (ZR, ZI )> and output quantity Y = (Y1, Y2)> ≡ (R,Θ)>.

NOTE Expressions (25) constitute a bivariate measurement model for R and Θ . Since R is a magnitude, and is known
to be non-negative, it is determined uniquely by the positive square root of R2. By using a “four quadrant inverse
tangent function” (often denoted by “atan2”) Θ is determined uniquely to satisfy −π < Θ ≤ π. Thus expressions (25)
can be cast as a bivariate measurement model.

9.3.1.2 Given are estimates x1 and x2 of the quantities X1 and X2, obtained from a suitable measur-
ing system, and associated standard uncertainties u(x1) and u(x2) and covariance u(x1, x2) = ru(x1)u(x2),
where r = r(x1, x2) denotes the associated correlation coefficient [JCGM 100:2008 5.2.2]. On the basis of this
information [JCGM 101:2008 6.4.8.1], X is assigned a bivariate Gaussian PDF, with expectation and covariance
matrix

[
x1

x2

]
,

[
u2(x1) ru(x1)u(x2)

ru(x1)u(x2) u2(x2)

]
.

The quantities X1 and X2 are assumed to have dimension one.

9.3.1.3 The determination of an estimate y of Y and the associated covariance matrix Uy is considered for
different choices of x1, x2, u(x1), u(x2) and r(x1, x2).

9.3.1.4 Six cases are considered, in all of which x2 is taken as zero and u(x1) = u(x2) = ux = 0.010. The
first three of these cases correspond to taking x1 = 0.001, 0.010 and 0.100, each with r(x1, x2) = 0 (see 9.3.2).
The second three cases correspond to taking the same x1, but with r(x1, x2) = 0.9 (see 9.3.3). Figure 15 shows
the contours of the joint PDFs assigned to the input quantities X for case 1 (x1 = 0.001 and r(x1, x2) = 0)
and case 4 (x1 = 0.001 and r(x1, x2) = 0.9). (In this figure a common set of contour values is not used for the
two contour plots.) The contours of the joint PDFs for the other cases are obtained by translating the contours
shown along the X1-axis so that they are centred on x1 = 0.010 (cases 2 and 5) or x1 = 0.100 (cases 3 and 6).

Figure 15 — Contours of the joint PDFs for the input quantities in the co-ordinate system

transformation model for cases 1 and (right) 4 (9.3.1.4)
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9.3.2 Propagation and summarizing: zero covariance

9.3.2.1 General

9.3.2.1.1 The evaluation of uncertainty is treated by applying the propagation of distributions (a)
analytically (for purposes of comparison), (b) using the (generalized) GUM uncertainty framework,
and (c) using MCM.

9.3.2.1.2 The (joint) PDF for Y , and the marginal PDFs for Y1 and Y2, can be obtained analytically in
the case that X1 is described by the Gaussian distribution N(x1, u

2
x) and X2 by N(x2, u

2
x), with X1 and X2

mutually independent. See C.2.

9.3.2.1.3 In the context of the GUM uncertainty framework, Y is characterized by the bivariate Gaussian
distribution N(y,Uy), where the estimate y = (y1, y2)> of Y is given by the solution to the equations

y2
1 = x2

1 + x2
2, tan y2 = x2/x1,

with associated covariance matrix Uy obtained by applying a generalization of the law of propagation of uncer-
tainty. See clause 6 and C.3.

9.3.2.1.4 MCM is applied with M = 107 trials. See clause 7.

9.3.2.2 Input estimate x1 = 0.001

9.3.2.2.1 For the input estimate x1 = 0.001, with correlation coefficient r(x1, x2) = 0, rows 1 to 3 of table 6
give the results obtained analytically, using the GUM uncertainty framework (GUF) and MCM.

NOTE The analytical results for y1 and u(y1) given in table 6 are determined by calculating numerically, to a high
degree of approximation, E(Y1) and V (Y1), which take the form of definite integrals involving the marginal distribution
for Y1 obtained analytically (see expression (C.2) in annex C). Similarly, the analytical results for y2 and u(y2) are
determined by calculating numerically E(Y2) and V (Y2), which involve the marginal distribution for Y2 obtained analyt-
ically (see expression (C.3) in annex C). It is straightforward to show that Cov(Y1, Y2) = 0 and, therefore, the analytical
result r(y1, y2) = 0.

Table 6 — Co-ordinate system transformation results, for input estimates with associated zero

covariance (9.3.2.2.1, 9.3.2.3.1 and 9.3.2.4.1)

x1 Method y1 y2 u(y1) u(y2) r(y1, y2)

0.001 Analytical 0.013 0.000 0.007 1.744 0.000
GUF 0.001 0.000 0.010 10.000 0.000
MCM 0.013 −0.001 0.007 1.744 0.000

0.010 Analytical 0.015 0.000 0.008 1.118 0.000
GUF 0.010 0.000 0.010 1.000 0.000
MCM 0.015 0.000 0.008 1.117 0.000

0.100 Analytical 0.101 0.000 0.010 0.101 0.000
GUF 0.100 0.000 0.010 0.100 0.000
MCM 0.101 0.000 0.010 0.101 0.000

9.3.2.2.2 Figure 16 shows in the top three graphs the contours of the joint PDFs for Y obtained analytically,
using the GUM uncertainty framework and using MCM. The PDF provided by MCM is consistent with the
analytic solution. However, the PDF provided by the GUM uncertainty framework is very different from the
analytic solution, and it is necessary to use a different set of contour values to illustrate this PDF (see 9.1.5).
Furthermore, the PDF provided by the GUM uncertainty framework takes positive values for infeasible values
of the output quantities, i.e. for values η1 < 0, η2 ≤ −π and η2 > π, erroneously implying a non-zero probability
density for such infeasible values.

9.3.2.2.3 Figure 16 shows in the bottom two graphs the marginal PDFs for the output quantities Y1 and Y2

obtained from the joint distribution for Y . The marginal PDFs provided by MCM (shown as histograms or
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scaled frequency distributions) are consistent with the analytic solutions (shown as dashed lines). However, the
marginal distributions provided by the GUM uncertainty framework (shown as solid lines) are very different
from the analytic solutions. For convenience of presentation, the graph of the marginal PDF for Y2 provided
by the GUM uncertainty interval is only shown for (feasible) values of η2 satisfying −π < η2 ≤ π, although
the PDF, which is the Gaussian N(0, 102), extends well beyond this interval. The marginal PDFs provided
by the GUM uncertainty framework imply a non-zero probability density for infeasible values of the output
quantities (see also 9.3.2.2.2).

9.3.2.3 Input estimate x1 = 0.010

9.3.2.3.1 For the input estimate x1 = 0.010, with correlation coefficient r(x1, x2) = 0, rows 4 to 6 of table 6
give the results obtained analytically, using the GUM uncertainty framework (GUF) and MCM. Figure 17 shows
the contours of the joint PDFs for Y obtained using the three approaches and the marginal PDFs for Y1 and Y2

obtained from the respective joint PDFs.

9.3.2.3.2 It is seen that the results obtained using MCM are consistent with the analytic solution. However,
the results obtained using the GUM uncertainty framework are different from the analytic solution, but not so
different as for the case x1 = 0.001. The relative differences between the standard uncertainties u(y1) and u(y2)
determined using the GUM uncertainty framework and analytically are approximately 25 % and 10 % (compared
with approximately 40 % and 470 % for the case x1 = 0.001).

9.3.2.4 Input estimate x1 = 0.100

9.3.2.4.1 For the input estimate x1 = 0.100, with correlation coefficient r(x1, x2) = 0, the results obtained
using the three aproaches are given in rows 7 to 9 of table 6 and figure 18.

9.3.2.4.2 It is seen that the results obtained using the GUM uncertainty framework and MCM are both
consistent with the analytic solution. The marginal distributions provided by the three approaches shown
in figure 18 are virtually indistinguishable. The estimates, associated standard uncertainties and associated
correlation coefficient determined using the three approaches agree to two significant decimal digits.

9.3.3 Propagation and summarizing: non-zero covariance

9.3.3.1 The evaluation of uncertainty is treated by applying the propagation of distributions (a) using the
(generalized) GUM uncertainty framework (see 6 and C.3), and (b) using MCM with M = 107 trials (see 7).

9.3.3.2 For the input estimates x1 = 0.001, x1 = 0.010 and x1 = 0.100, with correlation
coefficient r(x1, x2) = 0.9, table 7 gives the results obtained. The joint PDFs for Y and the marginal PDFs
for Y1 and Y2 obtained from the two approaches are shown for the three cases in, respectively, figures 19, 20
and 21.

Table 7 — Co-ordinate system transformation results, for input estimates with associated covariance

r(x1, x2) = 0.9 (9.3.3.2)

x1 Method y1 y2 u(y1) u(y2) r(y1, y2)

0.001 GUF 0.001 0.000 0.010 10.000 0.900
MCM 0.012 −0.556 0.008 1.599 −0.070

0.010 GUF 0.010 0.000 0.010 1.000 0.900
MCM 0.015 −0.343 0.008 0.903 0.352

0.100 GUF 0.100 0.000 0.010 0.100 0.900
MCM 0.101 −0.009 0.010 0.102 0.882

9.3.3.3 For the cases x1 = 0.001 and x1 = 0.010 the results provided by the GUM uncertainty frame-
work and MCM are very different. In particular, MCM gives marginal PDFs for Y2 in these two cases
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Figure 16 — Co-ordinate system transformation results, for input estimate x1 = 0.001 and

covariance r(x1, x2) = 0, showing (a) contours of the joint PDFs for Y obtained analytically (top), using

the GUM uncertainty framework (middle left) and MCM (middle right), and (b) marginal PDFs for Y1

(bottom left) and Y2 (bottom right) obtained analytically (dashed line), using the GUM uncertainty

framework (solid line) and MCM (histogram) (9.3.2.2.2 and 9.3.2.2.3)
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Figure 17 — As figure 16 except that x1 = 0.010 (9.3.2.3.1)
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Figure 18 — As figure 16 except that x1 = 0.100 (9.3.2.4.1)
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that have two peaks, and which are very different from the Gaussian (unimodal) distributions provided by
the GUM uncertainty framework. The positions of these peaks in the marginal PDFs are (approximately) at
the values η2 = π/4 ≈ 0.785 and η2 = π/4 − π ≈ −2.356. These values are the polar angles that define the
orientation of the major axis of the elliptical contours of the joint PDF for the input quantities X (see figure 15,
right).

9.3.3.4 For the case x1 = 0.100 there is much better agreement between the results provided by the GUM
uncertainty framework and MCM.

Figure 19 — Co-ordinate system transformation results, for input estimate x1 = 0.001 and

covariance r(x1, x2) = 0.9, showing (a) contours of the joint PDFs for Y obtained using the GUM

uncertainty framework (GUF, top left) and MCM (top right), and (b) the marginal PDFs for Y1

(bottom left) and Y2 (bottom right) obtained using GUF (solid line) and MCM (histogram) (9.3.3.2)

9.3.4 Discussion

9.3.4.1 For both cases of zero and non-zero covariance, as x1 becomes increasingly removed from zero, the
results given by the GUM uncertainty framework and those for MCM become closer to each other.

9.3.4.2 For the input estimates x1 = 0.001 and x1 = 0.010, and generally for values of x1 close to zero, the
effect of the non-zero covariance is to change noticeably the results provided by MCM.
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Figure 20 — As figure 19 except that x1 = 0.010 (9.3.3.2)
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Figure 21 — As figure 19 except that x1 = 0.100 (9.3.3.2)
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9.3.4.3 The (numerical) results given in tables 6 and 7 provide summaries of the (joint and marginal) PDFs
shown in the figures. In some circumstances such summaries may not be appropriate or may be insufficient to
describe the nature of the PDF characterizing the output quantity. Consider the results for the case of the input
estimate x1 = 0.001 and non-zero covariance r(x1, x2) = 0.9 (figure 19). The marginal PDF for Y2 obtained
using MCM is essentially bimodal, and the estimate y2 of Y2 is midway between the modes of the distribution
in an interval of values of Y2 where the probability density is small.

NOTE For an output quantity characterized by a multivariate Gaussian distribution, the expectation vector and co-
variance matrix for the quantity completely describes the distribution.

9.3.4.4 For the input estimates x1 = 0.001 and x1 = 0.010, and generally for measured values of x1 close to
zero, the determination of coverage regions in the form of ellipses and rectangles is inappropriate.

9.4 Simultaneous measurement of resistance and reactance

9.4.1 Formulation

9.4.1.1 The resistance R and reactance X of a circuit element are determined by measuring the amplitude V
of a sinusoidally-alternating potential difference across its terminals, the amplitude I of the alternating current
passing through it, and the phase angle φ of the alternating potential difference relative to the alternating cur-
rent. The input quantities are V , I and φ and the output quantities are the three impedance components R, X
and Z, where Z2 = R2 +X2.

9.4.1.2 The application of Ohm’s law gives the trivariate measurement model

R =
V

I
cosφ, X =

V

I
sinφ, Z =

V

I
. (26)

as the relationship between the input quantity X = (X1, X2, X3)> ≡ (V, I, φ)> and the output
quantity Y = (Y1, Y2, Y3)> ≡ (R,X,Z)>.

NOTE 1 For reasons of simplicity, any systematic errors that may be present in V , I and φ are ignored.

NOTE 2 In the GUM, reactance is denoted by X, the notation also used here. The reactance X, a component of the
vector output quantity Y , is not to be confused with X, the vector input quantity.

9.4.1.3 A series of n = 6 sets x1, . . . ,xn of simultaneous indication values of the input quantities are obtained
independently under similar conditions resulting in the data given in table 8.

NOTE In the GUM, the data consists of a series of five sets of simultaneous indication values obtained independently
(sets 1 to 5 of table 8). At least six sets are required for the covariance matrix in 9.4.2.5 to be defined. Set 6 in table 8
is therefore included, and is chosen to be the average of sets 1 to 5. This particular choice for set 6 is not essential, but
has the consequence that its inclusion does not change the average of the series.

Table 8 — A series of n = 6 sets of simultaneous indication values, obtained independently, of the input

quantities for the measurement of resistance and reactance (9.4.1.3)

Set V /V I/mA φ/rad

1 5.007 19.663 1.045 6
2 4.994 19.639 1.043 8
3 5.005 19.640 1.046 8
4 4.990 19.685 1.042 8
5 4.999 19.678 1.043 3
6 4.999 19.661 1.044 5

9.4.2 Propagation and summarizing

9.4.2.1 The determination of an estimate y of Y and the associated covariance matrix Uy is considered.
The approach here treats the problem defined by the measurement model (26) and information about the input
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quantities in that model in the form of the sets x1, . . . ,xn of indication values obtained independently given in
table 8. The GUM addresses this problem using the GUM uncertainty framework [JCGM 100:2008 H.2.3]. The
treatment here is extended to include MCM and an approach involving a multivariate t-distribution (see 5.3.2).

9.4.2.2 For the purpose of applying the (generalized) GUM uncertainty framework, estimates x ≡ (V̂ , Î, φ̂)>

of the input quantities X ≡ (V, I, φ)> are determined as the averages of the indication values given in
table 8 [JCGM 100:2008 4.2]:

x =
1
n

(x1 + · · ·+ xn).

The covariance matrix Ux associated with x contains the variances associated with the
averages [JCGM 100:2008 4.2] and the covariances associated with each pair of averages [JCGM 100:2008 5.2.3],
and is evaluated from

Ux =
1

n(n− 1)
M , M = (x1 − x)(x1 − x)> + · · ·+ (xn − x)(xn − x)>.

M is the matrix of sums of squares and products. The estimates x and the associated standard uncertainties
determined in this way are given in table 9, and the correlation coefficients associated with pairs of the estimates
in table 10.

NOTE In the GUM, an approach 2 is presented for this example, based on GUM 4.1.4 note. This approach is not
followed here, for the reason given in 4.1.

Table 9 — Estimates of the input quantities X ≡ (V, I, φ)> for the simultaneous measurement of

resistance and reactance and the associated standard uncertainties (9.4.2.2)

V /V I/mA φ/rad

Estimate 4.999 0 19.661 0 1.044 46
Std unc 0.002 6 0.007 7 0.000 61

Table 10 — Correlation coefficients associated with pairs of estimates of the input

quantities X ≡ (V, I, φ)> for the simultaneous measurement of resistance and reactance (9.4.2.2)

V I φ

V 1 −0.355 0.858
I 1 −0.645
φ 1

9.4.2.3 In the GUM uncertainty framework, estimates y ≡ (R̂, X̂, Ẑ)> of the output
quantities Y ≡ (R,X,Z)> are obtained by evaluating the measurement model (26) for the estimates x
of the input quantities:

y =
[
V̂

Î
cos φ̂,

V̂

Î
sin φ̂,

V̂

Î

]>
.

The covariance matrix Uy associated with y is evaluated using formula (3) in 6.2.1.3, namely Uy =CxUxC
>
x,

where Cx is the sensitivity matrix given by

Cx =



cos φ̂

Î
− V̂ cos φ̂

Î2
− V̂ sin φ̂

Î

sin φ̂

Î
− V̂ sin φ̂

Î2

V̂ cos φ̂

Î

1

Î
− V̂
Î2

0


. (27)

The results obtained from the application of the GUM uncertainty framework are summarized in row 1 (GUF)
of table 11.
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NOTE 1 The right-most column in table 11 is expressed as 1 − r(X,Z) because the correlation coefficient r(X,Z) is
close to unity (see 3.21 note 5).

NOTE 2 The covariance matrix Uy is singular as a result of dependencies in the trivariate measurement model (26):

Z2 = R2 +X2. (28)

Because of relation (28), the correlation matrix associated with the best estimates of R, X and Z is singular. However,
due to rounding, the correlation matrix given in line 1 of table 11 is neither singular nor positive definite. Owing to
the smallness of the standard uncertainties associated with the estimates of the input quantities, this singularity has no
practical influence on the results obtained [20, section 4].

Table 11 — Results for the simultaneous measurement of resistance and reactance (9.4.2.3, 9.4.2.4 and

9.4.2.5)

Method R/Ω X/Ω Z/Ω u(R)/Ω u(X)/Ω u(Z)/Ω r(R,X) r(R,Z) 1− r(X,Z)

GUF 127.732 219.847 254.260 0.058 0.241 0.193 −0.588 −0.485 0.749 × 10−2

MCM 127.732 219.847 254.260 0.130 0.536 0.429 −0.587 −0.482 0.770 × 10−2

Alt. GUF 127.732 219.847 254.260 0.130 0.540 0.431 −0.588 −0.485 0.749 × 10−2

9.4.2.4 Consider that the only information available about the input quantities is the series of indication
values listed in table 8, and that the three such values in each set can be regarded as a realization of the same
multivariate Gaussian distribution. Then X is characterized by the multivariate t-distribution tν (x,M/(νn))
with ν = n−N = 3 degrees of freedom, where x contains the averages of the indication values (as in 9.4.2.2).
See 5.3.2. The results obtained from an application of MCM with M = 106 trials are summarized in
row 2 (MCM) of table 11.

9.4.2.5 The quantity X characterized by the multivariate t-distribution given in 9.4.2.4 has covariance
matrix

V (X) =
1

(ν − 2)n
M .

An alternative approach that is preferred to the treatment in 9.4.2.3 is to evaluate formula (3),
namely Uy =CxUxC

>
x, with Cx the sensitivity matrix (27) and Ux replaced by V (X). The results obtained

from this alternative approach are summarized in row 3 (Alt. GUF) of table 11. Also see reference [15].

NOTE 1 V (X) is the covariance matrix corresponding to the additional information considered in 9.4.2.4.

NOTE 2 The covariance matrix for X obtained in this way is only defined if ν = n−N > 2. It is for this reason that,
in this example, at least n = 6 simultaneous indication values of the N = 3 input quantities are required.

9.4.2.6 The covariance matrix V (X) obtained from the distribution used to characterize X is related to
the covariance matrix Ux used in the application of the GUM uncertainty framework by

V (X) =
n− 1

n−N − 2
Ux.

9.4.2.7 The results obtained from the application of MCM and the alternative application of the GUM uncer-
tainty framework are negligibly different, which indicates that the measurement functions in the measurement
model (26) can be linearized, to a good degree of approximation, about the estimates of the input quantities.

9.4.2.8 In this example, the conditions for the application of the Welch-Satterthwaite
formula [JCGM 100:2008 formula (G.2b)] of the GUM uncertainty framework to calculate an effective
degrees of freedom are not valid because there are quantities for which the standard uncertainties have
associated degrees of freedom that are finite and those quantities are not independent.
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9.5 Measurement of Celsius temperature using a resistance thermometer

9.5.1 General

The example described in this subclause is concerned with the measurement of Celsius temperature by com-
paring the resistance of an industrial platinum resistance thermometer with that of a standard resistor using
a resistance bridge. The measurement of a single Celsius temperature is described by a univariate measure-
ment model (see 9.5.2), and that of several temperatures by a multivariate measurement model (see 9.5.3).
The example illustrates the treatment of these (univariate and multivariate) measurement models using the
(generalized) GUM uncertainty framework.

9.5.2 Measurement of a single Celsius temperature

9.5.2.1 The Celsius temperature θ is measured by comparing the resistance R(θ) of a resistance ther-
mometer with the resistance RS of a standard resistor using a resistance bridge. In the temperature interval
from 0 ◦C to 30 ◦C, the resistance of the thermometer is approximated by a parabolic function of its Celsius
temperature θ:

R(θ) =
(
1 +Aθ +Bθ2

)
R0, (29)

where R0, A and B are determined from a calibration of the thermometer. Estimates of R0, A and B and the
associated standard uncertainties are given in table 12, and the non-zero correlation coefficients associated with
pairs of the estimates in table 13.

Table 12 — Estimates of the input quantities X ≡ (R0, A,B,RS, r)
> for the measurement of a single

Celsius temperature and the associated standard uncertainties (9.5.2.1, 9.5.2.2 and 9.5.2.3)

R0/Ω A/◦C−1 B/◦C−2 RS/Ω r/1

Estimate 99.996 10 0.003 909 6 −6.0× 10−7 99.999 47 1.078 005 7
Std unc 0.000 50 0.000 002 7 1.1× 10−7 0.000 10 0.000 005 0

Table 13 — Non-zero correlation coefficients associated with pairs of estimates of the input quantities

for the measurement of a single Celsius temperature (9.5.2.1, 9.5.2.2 and 9.5.2.3)

R0 A B

R0 1 −0.155 0.092
A 1 −0.959
B 1

9.5.2.2 The estimate of RS and the associated standard uncertainty, determined by calibration, are given in
table 12. RS is independent of the parameters R0, A and B.

9.5.2.3 The quantity measured with the resistance bridge is the resistance ratio

r =
R(θ)
RS

. (30)

The measured value of r and the associated standard uncertainty are given in table 12. The resistance ratio is
independent of the parameters R0, A and B of the resistance thermometer and the resistance RS of the standard
resistor; there are thus no further non-zero correlation coefficients beyond those given in table 13.

9.5.2.4 By combining expressions (29) and (30), the following measurement model for the Celsius tempera-
ture θ is obtained:(

1 +Aθ +Bθ2
)
R0 − rRS = 0. (31)

In terms of the general notation, N = 5, m = 1, X ≡ (R0, A,B,RS, r)>, Y ≡ θ, and

h(Y,X) =
(
1 +Aθ +Bθ2

)
R0 − rRS.
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NOTE By considering expressions for the roots of a quadratic equation, transformation of the measurement model (31)
to explicit form is possible. However, the numerical evaluation of the transformed model can suffer from subtractive
cancellation, and the evaluation of sensitivity coefficients is made more difficult by the transformation.

9.5.2.5 The estimate y ≡ θ̂ of the Celsius temperature generating the measured resistance ratio r is found
by inserting the estimates given in table 12 into equation (31) and solving this equation. The solution obtained
is θ̂ = 20.023 2 ◦C.

9.5.2.6 The standard uncertainty uy ≡ u(θ̂) associated with the estimate y is evaluated using expression (8)
in 6.3.1.3, namely CyUyC>

y =CxUxC
>
x. Evaluating the matrices Cy and Cxin 6.3.1.3, namely

CY =
∂h

∂Y
≡ ∂h

∂θ
= (A+ 2Bθ)R0,

CX =
∂h

∂X
≡
[
∂h

∂R0
,
∂h

∂A
,
∂h

∂B
,
∂h

∂RS
,
∂h

∂r

]
=
[
1 +Aθ +Bθ2, R0θ,R0θ

2,−r,−RS

]
,

at the estimates of the input quantities given in table 12 and the corresponding estimate of the output quantity,
gives the sensitivity matrices

cy = 0.389 Ω ◦C−1

and

Cx =
[

1.08, 2.00× 103 Ω ◦C, 4.01 Ω◦C2, −1.08, −1.00× 102 Ω
]
.

The elements of the covariance matrix Ux associated with the estimates of the input quantities are calculated
from the standard uncertainties in table 12 and the correlation coefficients in table 13. The result obtained
is u(θ̂) = 0.004 5 ◦C.

9.5.3 Measurement of several Celsius temperatures

9.5.3.1 The resistance thermometer, standard resistor and resistance bridge described in 9.5.2 are used to
measure the resistance ratios r1, . . . , r10 generated by ten Celsius temperatures θ1, . . . , θ10.

9.5.3.2 The estimates of the input quantities, R0, A, B and RS and the associated standard uncertainties
are given in table 12 and the estimates of r1, . . . , r10 in table 14. The only non-zero correlation coefficients
associated with pairs of the estimates remain those given in table 13. The resistance ratios are assumed to be
independent, an assumption that is valid if the magnitudes of the random errors in the measured resistance
ratios dominate.

Table 14 — Estimates of the resistance ratios for the measurement of several Celsius temperatures and

the associated standard uncertainties (9.5.3.2)

r1 r2 r3 r4 r5

(Estimate−1)/10−7 53 150 054 300 055 450 056 600 056
Std unc/10−7 50 50 50 50 50

r6 r7 r8 r9 r10

(Estimate−1)/10−7 780 057 900 058 1 050 059 1 200 060 780 057
Std unc/10−7 50 50 50 50 50

9.5.3.3 Each resistance ratio rj is related to the corresponding Celsius temperature θj by an equation of the
form (31): (

1 +Aθj +Bθ2
j

)
R0 − rjRS = 0, j = 1, . . . , 10. (32)

In terms of the general notation, N = 14, m = 10, X ≡ (R0, A,B,RS, r1, . . . , r10)>, Y ≡ (θ1, . . . , θ10)>, and

h(Y ,X) =

 h1(Y ,X)
...

h10(Y ,X)

 =

 R0

(
1 +Aθ1 +Bθ2

1

)
− r1RS

...
R0

(
1 +Aθ10 +Bθ2

10

)
− r10RS

.
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NOTE Transformation of the measurement model (32) to explicit form is possible (see 9.5.2.4).

9.5.3.4 The estimates y ≡ (θ̂1, . . . , θ̂10) of the Celsius temperatures Y are given by inserting the estimates
given in columns 1 to 4 of table 12 and in table 14 into equations (32) and solving these equations. These
estimates are given in table 15.

Table 15 — Estimates of the output quantities Y and the associated standard uncertainties for the

measurement of several Celsius temperatures (9.5.3.4 and 9.5.3.5)

θ1 θ2 θ3 θ4 θ5 θ6 θ6 θ8 θ9 θ10

Estimate/◦C 0.010 0 3.849 1 7.692 8 11.541 0 15.393 8 20.023 2 23.113 1 26.979 7 30.850 9 20.023 2
Std unc/◦C 0.001 8 0.002 7 0.004 0 0.004 6 0.004 7 0.004 5 0.004 6 0.006 0 0.008 9 0.004 5

Table 16 — Correlation coefficients associated with pairs of estimates of the output quantities Y for

the measurement of several Celsius temperatures (9.5.3.5)

θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10

θ1 1 0.252 0.127 0.079 0.059 0.054 0.056 0.054 0.050 0.054
θ2 1 0.815 0.800 0.755 0.580 0.312 −0.092 −0.358 0.580
θ3 1 0.902 0.868 0.691 0.400 −0.057 −0.365 0.691
θ4 1 0.909 0.766 0.495 0.040 −0.281 0.766
θ5 1 0.847 0.629 0.208 −0.115 0.847
θ6 1 0.841 0.549 0.264 0.918
θ7 1 0.812 0.613 0.841
θ8 1 0.909 0.549
θ9 1 0.264
θ10 1

9.5.3.5 The covariance matrix Uy associated with y is evaluated using expression (8) in 6.3.1.3,
namely CyUyC>

y =CxUxC
>
x. Cy and Cx are sensitivity matrices given by evaluating CY and CX , respec-

tively, at the estimates of the input and output quantities. CY is a diagonal matrix of dimension 10× 10 with
diagonal entries R0(A+ 2Bθ1), . . . , R0(A+ 2Bθ10). CX is a matrix of dimension 10× 14 given by

CX =
[
CX

(1) CX
(2)
]
,

where

CX
(1) =

 1 +Aθ1 +Bθ2
1 R0θ1 R0θ

2
1 −r1

...
...

...
...

1 +Aθ10 +Bθ2
10 R0θ10 R0θ

2
10 −r10


is a matrix of dimension 10× 4, and CX (2) is a diagonal matrix of dimension 10× 10 with diagonal elements all
equal to −RS. The covariance matrix Ux is calculated from the standard uncertainties given in columns 1 to 4 of
table 12 and in table 13. The standard uncertainties associated with the estimates of the Celsius temperatures
and the correlation coefficients associated with pairs of estimates, derived from the matrix Uy, are given in
table 15 and table 16, respectively.

9.5.3.6 The results given in table 15 and figure 22 show how the standard uncertainty u(θ̂j) varies with
the estimate θ̂j of Celsius temperature θj . The uncertainty is smallest around 0 ◦C and increases rapidly for
temperatures greater than 25 ◦C. This effect is due to the fact that the resistance thermometer was calibrated
at the temperatures 0 ◦C, 15 ◦C, 20 ◦C and 25 ◦C, and that the Celsius temperature 0 ◦C during calibration was
generated using an ice bath with a standard uncertainty three times smaller than those associated with the
other three temperatures, which were generated using an oil bath.

NOTE In figures 22 and 23 the straight-line segments joining the plotted points are included for purpose of visualization.

9.5.3.7 Using the results given in the final column of table 16, figure 23 shows how the correlation coefficient
associated with the pair of estimates θ̂j and θ̂10 of Celsius temperatures θj and θ10 = 20 ◦C varies with θ̂j ,
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j = 1, . . . , 9. The correlation coefficient has a maximum for θ̂j = θ̂6 and approaches zero as the absolute differ-
ence |θ̂j − θ̂10| becomes large. The example demonstrates that quantities measured with the same instrument
can be highly correlated.

Figure 22 — Standard uncertainty u(θ̂j) associated with the estimate θ̂j of Celsius

temperature θj (9.5.3.6)

Figure 23 — Correlation coefficient associated with the pair of estimates θ̂j and θ̂10 of Celsius

temperatures θj and θ10 = 20 ◦C (9.5.3.7)
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Annex A
(informative)

Derivatives of complex multivariate measurement functions

A.1 In this annex consideration is given to the algebraically efficient determination of the partial derivatives
of first order of the measurement function f in a complex multivariate measurement model

Y = f(X),

where

X = (X1, . . . ,XN )>, Y = (Y 1, . . . ,Y m)>,

and

f = (f1, . . . ,fm)>,

Xi denoting the complex quantity Xi,R + iXi,I, with Xi,R and Xi,I real scalar quantities, and i2 = −1, and
similarly for Y j and f j .

A.2 Let Ux denote the covariance matrix of dimension 2N × 2N associated with an estimate x of X. Ux
takes the form

Ux =

 U(x1,x1) · · · U(x1,xN )
...

. . .
...

U(xN ,x1) · · · U(xN ,xN )

,
where

U(xi,xj) =
[
u(xi,R, xj,R) u(xi,R, xj,I)
u(xi,I, xj,R) u(xi,I, xj,I)

]
is the covariance matrix of dimension 2× 2 associated with the (complex) estimates xi and xj of Xi and Xj ,
respectively.

A.3 The covariance matrix

Uy =

 U(y1,y1) · · · U(y1,ym)
...

. . .
...

U(ym,y1) · · · U(ym,ym)

,
of dimension 2m× 2m, where

U(y`,yj) =
[
u(y`,R, yj,R) u(y`,R, yj,I)
u(y`,I, yj,R) u(y`,I, yj,I)

]
,

associated with the estimate

y = f(x)

of Y is given by the generalized law of propagation of uncertainty

Uy = CxUxCx
>. (A.1)

A.4 Cx is the sensitivity matrix of dimension 2m× 2N given by evaluating

CX =

 C1,1 · · · C1,N

...
. . .

...
Cm,1 · · · Cm,N


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at X = x, where Cj,i is the matrix of dimension 2 × 2 of the partial derivatives of first order of the real and
imaginary parts of f j with respect to the real and imaginary parts of Xi:

Cj,i =


∂fj,R
∂Xi,R

∂fj,R
∂Xi,I

∂fj,I
∂Xi,R

∂fj,I
∂Xi,I

.

A.5 For any complex scalar quantity Q = QR + iQI , consider the matrix representation of dimension 2× 2
for Q [14]:

M(Q) =
[
QR −QI

QI QR

]
.

Then, Cj,i can be expressed as

Cj,i = M

(
∂f j
∂Xi

)
,

and provides the basis for an algebraically efficient means for forming the partial derivatives: only the complex
derivatives of first order of the f j with respect to the Xi need be formed.
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Annex B
(informative)

Evaluation of sensitivity coefficients and covariance matrix for multivariate
measurement models

B.1 When recognized concepts from numerical linear algebra [13] are used, a numerically stable way to
form Uy, the solution of the linear system of equations (8) is as follows:

a) form the Cholesky factor Rx of Ux, that is the upper triangular matrix such that R>xRx = Ux;

b) factorize Cx as the product Cx = QxWx, where Qx is an orthogonal matrix and Wx is upper triangular;

c) factorize Cy as the product Cy = LyWy, where Ly is lower triangular and Wy is upper triangular;

d) solve the matrix equation W>
yM1 = I for M1;

e) solve L>yM2 = M1 for M2;

f) form M3 = Q>xM2;

g) form K = W>
xM3;

h) form M = RxK;

i) orthogonally triangularize M to give the upper triangular matrix R;

j) form Uy = R>R.

B.2 This procedure can be verified using elementary matrix algebra. Further details are available [7].
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Annex C
(informative)

Co-ordinate system transformation

C.1 General

This annex is concerned with some deatils of the co-ordinate system transformation problem (see 9.3).
Subclause C.2 provides the joint PDF for Y analytically for the case that X1 is described by the Gaussian
distribution N(x1, u

2
x) and X2 by N(x2, u

2
x), with X1 and X2 mutually independent. Subclause C.3 applies

the GUM uncertainty framework for correlated and uncorrelated input quantities.

C.2 Analytical solution for a special case

C.2.1 Suppose X has PDF gX(ξ), and ξ = f−1(η) is a transformation from values η = (η1, . . . , ηN )> of Y
to values ξ = (ξ1, . . . , ξN )> of X that is one-to-one. Then [19, page 35], Y has PDF

gY (η) = gX(f−1(η))|det(J)|, (C.1)

where det(J) is the determinant of the Jacobian matrix J ,

J =


∂ξ1
∂η1

· · · ∂ξ1
∂ηN

...
. . .

...
∂ξN
∂η1

· · · ∂ξN
∂ηN


regarded as a function of η, with det(J) assumed to be nowhere zero or infinite.

NOTE 1 The result (C.1) is sometimes known as the “Change of variables theorem”.

NOTE 2 The result for the transformation of a single quantity (N = 1) is as follows [21, pages 57–61]: if η = f(ξ) is
differentiable and monotonic, Y has PDF

gY (η) = gX
(
f−1(η)

) ∣∣∣∣df−1(η)

dη

∣∣∣∣.
C.2.2 For the co-ordinate system transformation problem considered in 9.3, X ≡ (X1, X2)> with
values ξ = (ξ1, ξ2)>, Y ≡ (R,Θ)> with values η = (η1, η2)>, and

ξ1 = η1 cos η2, ξ2 = η1 sin η2.

Therefore,

J =
[

cos η2 −η1 sin η2

sin η2 η1 cos η2

]
,

and

det(J) = η1.

It follows that, provided η1 > 0,

gY1,Y2
(η1, η2) = η1gX1,X2

(η1 cos η2, η1 sin η2).
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C.2.3 Consider the case that X1 is described by the Gaussian distribution N(x1, u
2
x) and X2 by N(x2, u

2
x),

with X1 and X2 mutually independent. Then,

gX1,X2
(ξ1, ξ2) = gX1

(ξ1)gX2
(ξ2) =

1
2πu2

x

exp
(
− (ξ1 − x1)2 + (ξ2 − x2)2

2u2
x

)
,

giving

gY1,Y2
(η1, η2) =

η1

2πu2
x

exp
(
− (η1 cos η2 − x1)2 + (η1 sin η2 − x2)2

2u2
x

)
.

C.2.4 The marginal distribution for Y1 ≡ R is

gY1
(η1) =

∫ π

−π
gY1,Y2

(η1, η2) dη2 =
η1

u2
x

exp
(
−η

2
1 + y2

1

2u2
x

)
I0

(
η1y1

u2
x

)
, (C.2)

where

y2
1 = x2

1 + x2
2,

and I0 is the modified Bessel function of the first kind of order zero.

NOTE 1 The distribution is the Rice distribution with parameters y1 and ux.

NOTE 2 If y1 = 0, the distribution is the Rayleigh distribution with parameter ux.

NOTE 3 If ux = 1, the distribution is the non-central chi-squared distribution with two degrees of freedom and non-
centrality parameter y2

1 .

C.2.5 The marginal distribution for Y2 ≡ Θ is

gY2
(η2) =

∫ ∞
0

gY1,Y2
(η1, η2) dη1 =

1
2π

exp
(
− y2

1

2u2
x

)[
1 +
√
πτ exp(τ2)erfc(−τ)

]
, (C.3)

where

τ =
x1 cos η2 + x2 sin η2√

2ux
,

and

erfc(z) = 1− 2√
π

∫ x

0

exp(−t2) dt

is the complementary error function.

C.2.6 If also x1 = x2 = 0, then

gY1,Y2
(η1, η2) =

η1

2πu2
x

exp
(
− η2

1

2u2
x

)
,

and it follows that Y1 and Y2 are mutually independent with distributions

gY1
(η1) =

η1

u2
x

exp
(
− η2

1

2u2
x

)
,

a Rayleigh distribution with parameter ux, and

gY2
(η2) =

1
2π
,

a rectangular distribution between −π and π.
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C.3 Application of the GUM uncertainty framework

C.3.1 For the co-ordinate system transformation problem considered in 9.3, the measurement model can be
written as the bivariate measurement model

Y1 = f1(X1, X2) =
√
X2

1 +X2
2 , Y2 = f2(X1, X2) = tan−1(X2/X1),

where it is understood that Y1 ≥ 0 and −π < Y2 ≤ π. The input quantities X1 and X2 have estimates x1

and x2 and associated uncertainties u(x1) and u(x2), respectively, and associated covariance u(x1, x2).

C.3.2 The application of 6.2.1.2 gives

y1 =
√
x2

1 + x2
2, y2 = tan−1(x2/x1),

as the estimates of Y1 and Y2.

C.3.3 The sensitivity matrix Cx of dimension 2× 2 is given by evaluating

CX =


∂f1

∂X1

∂f1

∂X2

∂f2

∂X1

∂f2

∂X2

 =


X1√

X2
1 +X2

2

X2√
X2

1 +X2
2

−X2

X2
1 +X2

2

X1

X2
1 +X2

2


at X1 = x1 and X2 = x2. Therefore, provided y1 =

√
x2

1 + x2
2 > 0,

Cx =


x1√
x2

1 + x2
2

x2√
x2

1 + x2
2

−x2

x2
1 + x2

2

x1

x2
1 + x2

2

 =

 cos y2 sin y2

−(sin y2)/y1 (cos y2)/y1

.

C.3.4 The application of 6.2.1.3 gives

Uy =
[

u2(y1) u(y1, y2)
u(y2, y1) u2(y2)

]
as the covariance matrix associated with the estimates y = (y1, y2)>, with u(y2, y1) = u(y1, y2) and

u2(y1) = u2(x1) cos2 y2 + u2(x2) sin2 y2 + 2u(x1, x2) cos y2 sin y2,

u(y1, y2) = (u2(x2)− u2(x1))(sin y2 cos y2)/y1 + u(x1, x2)(cos2 y2 − sin2 y2)/y1,

u2(y2) = u2(x1)(sin2 y2)/y2
1 + u2(x2)(cos2 y2)/y2

1 − 2u(x1, x2)(sin y2 cos y2)/y2
1 .

C.3.5 In the context of the GUM uncertainty framework, Y is characterized by the bivariate Gaussian
distribution N(y,Uy), which can be used as the basis of determining coverage regions for Y corresponding to
a prescribed coverage probability p (see 6.5).

C.3.6 Consider the case that u(x1) = u(x2) = ux and u(x1, x2) = 0 (see C.2.3). Then,

u2(y1) = u2
x, u(y1, y2) = 0, u2(y2) = u2

x/y
2
1 ,

with Y characterized by a bivariate Gaussian distribution as in C.3.5. It follows that, in this special
circumstance of uncorrelated quantities assigned a bivariate Gaussian distribution, Y1 and Y2 are mutu-
ally independent [19, theorem 3.1.3]. Consequently, Y1 and Y2 are characterized by univariate Gaussian
distributions N(y1, u

2(y1)) and N(y2, u
2(y2)), respectively.

NOTE In contrast, in the analytical treatment C.2, where Y is not characterized by a bivariate Gaussian distribution,
the conditions u(x1) = u(x2) and u(x1, x2) = 0 are not sufficient for Y1 and Y2 to be independent. An additional
condition, viz. x1 = x2 = 0, is required (see C.2.6).
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Annex D
(informative)

Glossary of principal symbols

Cx sensitivity matrix of dimension m×N associated with x

Cy sensitivity matrix of dimension m×m associated with y

c ndig-decimal digit integer

Corr(Xi, Xj) correlation for two random variables Xi and Xj

Cov(Xi, Xj) covariance for two random variables Xi and Xj

det(J) Jacobian determinant

E(Xi) expectation of random variable Xi

E(X) expectation of random variable X

Fm,n Fisher-Snedecor distribution with m and n−m degrees of freedom

f univariate measurement function depending on input quantities X

f multivariate measurement function depending on input quantities X

G discrete representation of distribution function GY (η) for output quantity Y from a Monte
Carlo procedure

GX(ξ) distribution function with variable ξ for input quantity X

gXi(ξi) probability density function with variable ξi for input quantity Xi

gX(ξ) joint (multivariate) probability density function with variable ξ for input quantity X

GY (η) distribution function with variable η for output quantity Y

gY (η) joint (multivariate) probability density function with variable η for output quantity Y

h univariate measurement model expressed as a relationship between output quantity Y and input
quantities X on which Y depends

h multivariate measurement model expressed as a relationship between output quantities Y and
input quantities X on which Y depends

i imaginary unit given by i2 = −1

J Jacobian matrix

kp coverage factor for a coverage region in the form of a hyper-ellipsoid corresponding to coverage
probability p

kq coverage factor for a coverage region in the form of a hyper-rectangle corresponding to coverage
probability p

L lower triangular matrix

c© JCGM 2011— All rights reserved 65



JCGM 102:2011

` integer in the representation c×10` of a numerical value, where c is an ndig-decimal digit integer

m number of output quantities Y1, . . . , Ym

M number of Monte Carlo trials

M matrix of sums of squares and products

N number of input quantities X1, . . . , XN

N(0, 1) standard Gaussian distribution

N(µ, σ2) Gaussian distribution with parameters µ and σ2

N(µ,V ) multivariate Gaussian distribution with parameters µ and V

n number of indication values in a series

ndig number of significant decimal digits regarded as meaningful in a numerical value

Pr(z) probability of event z

p coverage probability

RY coverage region in m dimensions for Y

Ry correlation matrix of dimension m×m associated with y

R(0, 1) standard rectangular distribution over the interval [0, 1]

R(a, b) rectangular distribution over the interval [a, b]

r(xi, xj) correlation coefficient associated with estimates xi and xj of input quantities Xi and Xj

s standard deviation of a series of n indication values x1, . . . , xn

sz standard deviation associated with average z of values z(1), . . . , z(h) in adaptive Monte Carlo
procedure, where z may denote estimate yj of output quantity Yj , standard uncertainty u(yj)
associated with yj , maximum eigenvalue λmax of correlation matrix Ry, or coverage factor kp
of coverage region for Y

> superscript denoting matrix transpose

tν(µ,S) multivariate t-distribution with parameters µ and S, and ν degrees of freedom

Up expanded uncertainty corresponding to coverage probability p

Ux covariance matrix associated with estimate x of input quantity X

Uy covariance matrix associated with estimate y of output quantity Y

ux, u(x) standard uncertainty associated with estimate x of input quantity X

u(xi) standard uncertainty associated with estimate xi of input quantity Xi

u(xi, xj) covariance associated with estimates xi and xj of input quantities Xi and Xj
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u(x) vector (u(x1), . . . , u(xN ))> of standard uncertainties associated with estimate x of input
quantity X

V (Xi) variance of random variable Xi

V covariance (variance-covariance) matrix

V (X) covariance matrix of random variable X

Xi ith input quantity, regarded as a random variable

X vector (X1, . . . , XN )> of input quantities

x̄ average of series of n indication values x1, . . . , xn

xi estimate (expectation) of Xi, or ith indication value in series

x estimate (expectation) (x1, . . . , xN )> of X

xi,r rth Monte Carlo draw from probability density function for Xi

xr rth Monte Carlo draw, containing values x1,r, . . . , xN,r, drawn from probability density functions
for N input quantities X1, . . . , XN or from joint probability density function for X

Yj jth output quantity, regarded as a random variable

Y vector (Y1, . . . , Ym)> of output quantities, regarded as random variables

yj estimate (expectation) of Yj

y estimate (expectation) (y1, . . . , ym)> of Y

ỹ estimate of Y , obtained as average of M model values yr from a Monte Carlo run

yr rth model value f(xr)

ẙr rth model value f(xr) suitably transformed

z(h) hth value in adaptive Monte Carlo procedure, where z may denote estimate yj of output
quantity Yj , standard uncertainty u(yj) associated with yj , maximum eigenvalue λmax of cor-
relation matrix Ry, or coverage factor kp for a coverage region for Y

α probability value

Γ (z) gamma function with variable z

δ numerical tolerance associated with numerical value

η variable describing possible values of output quantity Y

κp numerical tolerance associated with coverage factor kp for a hyper-ellipsoidal coverage region

κq numerical tolerance associated with coverage factor kq for a hyper-rectangular coverage region

λmax largest eigenvalue of correlation matrix

λmin smallest eigenvalue of correlation matrix
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µ expectation of quantity characterized by probability distribution

µ expectation of quantity characterized by joint probability distribution

ν degrees of freedom of t-distribution or chi-squared distribution

νeff effective degrees of freedom associated with standard uncertainty u(y)

ξi variable describing possible values of input quantity Xi

ξ variable (ξ1, . . . , ξN )> describing possible values of input quantity X

ρ numerical tolerance associated with largest eigenvalue λmax of a correlation matrix

σ standard deviation of quantity characterized by probability distribution

σ2 variance (squared standard deviation) of quantity characterized by probability distribution

Σ covariance matrix of vector quantity characterized by joint probability distribution

χ2
ν chi-squared distribution with ν degrees of freedom
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