Guidance on Applying the Measurement Methods Matrix (MMM) in Using Comparison Results to Support CMCs

In the interest of supporting the calibration and measurement capabilities (CMCs) published by National Measurement and Designated Institutes (NMIs and DIs) on the Key Comparison Database (KCDB), the Consultative Committee on Ionizing Radiation Section II [CCRI(II)] developed a generic groupings table of radionuclides called the MMM. Using these groupings, CCRI(II) and corresponding technical committees in the Regional Metrology Organizations (RMOs) might leverage a select set of comparisons to support a wider range of CMCs for the measurement of radionuclides. The MMM has been designed for used by the NMIs and DIs.

For the official rules to CMC claims, refer to the latest "Rules for entering CMC Claims in Ionizing Radiation Metrology" located on the BIPM website: <u>https://www.bipm.org/en/committees/cc/ccri/publications</u>

This document is meant to be used as a tool for evaluating CMCs but should not be construed to imply traceability of radionuclides, which still requires an unbroken chain of comparisons or calibrations against an appropriate standard.

- Radionuclides have been categorized by a <u>primary</u> measurement method (column in the MMM) as appropriate for a specific nuclide.
- Each method is described by the geometry, detector type, radiation, and detection mode. The relative difficulty of measuring a specific nuclide by the indicated method (without consideration of source preparation issues) is denoted by a color-coded system: "red" for the most difficult, "yellow" for the moderately difficult, and "green" for the least difficult. It should be noted that a "red" nuclide by one method may be indicated as "green" by another.
- Several primary methods may be used for a given radionuclide; the application of more than one method for verification and confidence in results, as appropriate, is encouraged.
- In general, results from a comparison of a radionuclide indicated as red for a given primary measurement method may be used to support the calibration and measurement capability (CMC) claims for other nuclides of the same type (presuming similar decay complexities and measurement challenges) by that measurement method (i.e., other red, yellow and green-indicated nuclides for that method). Results from a comparison of a nuclide indicated as yellow will support claims for the yellow and green-indicated nuclides, and that of a green-indicated nuclide will support CMCs of only green-indicated nuclides by the same method. CMCs should, in all cases, be claimed only for those radionuclides measured by the submitting laboratory.
- A comparison result of a radionuclide measured by a specific primary method generally will <u>not</u> be supportive of claims for that radionuclide measured by other primary methods.

- As comparisons are generally not undertaken for secondary methods specifically, a similar matrix for those methods is not practical. Extension of primary comparison results to support CMCs of secondary methods may be possible with demonstration of traceability of those methods to the primary method used in the comparison; the uncertainties would be expected to be greater than those achieved in the initial, primarymethod comparison.
- When a secondary method is used in the context of a comparison, the results for that comparison can support the CMCs of only that nuclide as measured by that method.

MMM

131		11-200	3														
132		Po-209		1.5		2											
133		Pb-210				3							2	1			
134		Po-210		1.5		2	2										
135		At-215															
136	ENV	Rn-222								?						3	3
137		Ra-223	1					1	1								
138		Ra-224		3			3										
139		Ac-225															
140		Ra-226											4		2		
141		Ac-227											5			4	
142		Th-227	1														
143		Ac-228											2				
144		Ra-228/Ac-228											3				
145	i.	Th-228+d											4		3	3	
146		Th-229		2		2	2			3							
147		Th-230		1		2	2										
148		Pa-231															
149		Th-232		2		2	2										
150		U-232		1		2	2										
151	ENV	Pa-233	1.5			3								3			
152		U-233		1		2	2										
153		Th-234(/Pa-234)				4							2				
154		U-234		1		2	2										
155		U-235		1									3		3	1	
156		U-236		4		2	4										
157		Np-237											1.5	0.6	2	1.5	
158		Pu-238	1	1		2	0.5										
159		U-238/(Th,Pa)											3	2	3	4	
160		Pu-239		1		2	2										
161		Pu-240		1		2	2										
162		Pu-241						2	2								
163	DCA	Am-241	0.8	1		2	0.5			?							
164		Cm-242	1	1		2	2										
165		Pu-242	2	1		2	2										
166		Am-243											2	1	3	1	
167		Cm-243				3	3	2									
168		Cm-244		1		2	1										

(DS)* = delayed state or active daughter

Acronyms for radioactivity measurement methods as used in the Generic Groupings Table

D.F.G. Reher, IRMM, 2001-12-11; updated 2005-10-18 (lk)

Geometry	acronym
4π	4P
defined solid	
angle	SA
2π	2P
undefined	
solid angle	UA

Detector	acronym	Radiation	acronym	Mode				
proportional counter	PC	positron	PO	efficiency tracing				
press. prop counter	PP	beta particle	BP	internal gas counting				
liquid scintillation counting	LS	Auger electron	AE	CIEMAT/NIST				
Cerenkov detector **	CD	Conversion electron	CE	sum counting				
Nal(TI)	NA	Bremsstrahlung	BS	coincidence				
Ge(HP)	GH	Gamma ray	GR	anti-coincidence				
Si(Li)	SL	X - rays	XR	coincidence counting with efficiency tracing				
Ge-Li	GL	alpha - particle	AP	anti-coincidence counting with efficiency tracing				
Csl	CS	mixture of various radiation	MX	triple-to-double coincidence ratio counting				
ionisation chamber [§]	IC	Photon*	PH	high efficiency				
grid ionisation chamber [§]	GC		-	selective sampling				
bolometer	BO							
calorimeter	CA	*this notation not used in earlier versions						
plastic scintillator	SP	[§] indicates that these methods are not addressed by the generic						
PIPS detector	PS	they are secondary methods, which are not included here.						

e generic tables as they are secondary methods, which are not included here. ** changed to CD March 2016

acronym

ET

IG

CN

SC СО AC

СТ

AT

ΤD HE SS

Common Terms for Primary Methods in the

Measurement Methods Matrix

Matrix Column	Noted in Matrix	Common Nomenclature
4P-BP/AP-PC/PP/LS/SP-GR-		Coincidence/anticoincidence
NA/GH-CO/AC		counting (beta or alpha-particle
		emitting radionuclides) in
		approximately $4\pi\iota$ geometry
4P-XR/AE-PC/PP/LS/SP-GR-		Coincidence/anticoincidence
NA/GH-CO/AC		counting (x ray or Auger-electron
		emitting radionuclides) in
		approximately $4\pi\iota$ geometry
4P-AP-LS-00-00-HE		High efficiency (liquid scintillation)
		counting (alpha particle-emitting
		radionuclides)
4P-BP/AP/XR/AE-NA/CS-		High efficiency (Nal(Tl) or Csl
00-00-HE		detector in approximately $4\pi\iota$
		geometry) counting (beta or alpha
		particle, or x ray or Auger-electron
		emitting radionuclides)
4P-PH-NA-00-00-HE		High efficiency (Na(TI) detector in
		approximately $4\pi\iota$ geometry)
		counting (photon-emitting
		radionuclides)
4P-BP/AP-PP-00-00-HE*	nuclides emitting beta or alpha	High efficiency (pressurized
	particles, accompanied by	proportional counter in
	emission of gamma photons	approximately $4\pi\iota$ geometry)
		counting (beta or alpha-particle
		emitting radionuclides producing
		photons)
4P-XR/AE-PP-00-00-HE		High efficiency (pressurized
		proportional counter in
		approximately $4\pi\iota$ geometry)
		counting (x ray or Auger-electron
		emitting radionuclides)
SA-AP-PS-00-00-00		Defined Solid angle alpha-particle
		counting using a PIPS detector
4P-BP-PC/PP/LS-GR-NA-		Coincidence/anticoincidence
CT/AT		counting with efficiency tracing (beta
		particle-emitting radionuclides) in
		approximately $4\pi\iota$ geometry
4P-AP/BP/PH/AE/XR/CE-LS-		CIEMAT/NIST liquid scintillation
00-00-CN		counting (all radiations)
4P-BP-LS-00-00-TD**	pure-beta emitting nuclides	TDCR (pure beta particle-emitting
	only	radionuclides)

4P-BP-CD-00-00-TD**	Cerenkov Counting in LS	TDCR using Cerenkov counting in LS
	channel	channel (pure beta-particle emitter
		radionuclides)
4P-AP/BP/PH/AE/XR/CE-LS-	all nuclides other than pure-	TDCR (all other than pure beta-
00-00-TD***	beta emitters	particle emitting radionuclides)
4P-AP/BP/PH/AE/XR-CD-	TDCR with Cerenkov counting,	TDCR using Cerenkov counting (all
00-00-TD***	nuclides other than pure-beta	other than pure beta-particle
	emitters	emitting radionuclides
4P-BP-PP-00-00-HE****	pure-beta emitting nuclides	High efficiency (pressurized
	only	proportional counter in
		approximately $4\pi\iota$ geometry)
		counting (pure beta particle emitters)
4P-BP-PC-00-00-IG		Internal gas (proportional counter)
		counting (beta particle-emitting
		radionuclides) in approximately $4\pi\iota$
		geometry
??-XR/AE/PO/CE-??-00-00-		X ray, Auger, conversion electron or
??		positron emitting radionuclides, any
		other primary counting method
??-GR-??-00-00-??		Gamma ray emitting radionuclides,
		any other primary counting method
4P-??-PC/PP/LS/SP-??-	Delayed state	Coincidence/anticoincidence
NA/GH-CO/AC/CT/AT (DS)*		methods, delayed state radionuclide
		decay
4P-??-LS-00-00-CN/TD	Delayed state	Liquid scintillation (CIEMAT/NIST or
(DS)*		TDCR) methods, delayed state
		radionuclide decay
4P-??-PP-00-00-HE (DS)*	Delayed state	High efficiency (pressurized
		proportional counter in approximate
		4 pi geometry) method, delayed state
		radionuclide decay
SA-??-PS-00-00-00 (DS)*	Delayed state	Defined Solid angle counting
		methods, delayed state radionuclide
		decay
4P-??-PC-00-00-IG (DS)*	Delayed state	Internal gas counting methods,
		delayed state radionuclide decay