

Increasing Prevalence of Marine and Freshwater toxins: A Global Measurement Challenge

Jeremy Melanson, Ph.D. Director Research & Development National Research Council Canada, Metrology Research Center October 19, 2024

Marine algal toxins – commonly associated with "red tide"

- Produced by marine dinoflagellates (i.e. phytoplankton) and diatoms and accumulate in filter feeders.
- Established worldwide regulations and shellfish safety testing.

Impact of Shellfish Poisoning

- Hundreds of deaths and thousands of • illnesses occur each year globally.
- The estimated global economic impact of shellfish toxins is estimated at 4 billion US dollars per year.*

Crab pots lie empty, boats idled as toxic algae stalls a San Francisco tradition

In Case You Missed It

Summer 2015 – Domoic acid impacts multiple fisheries and marine mammals across west coast of North America

Paralytic Shellfish Poisoning Incidents – Saxitoxins: A Global Problem

Marine Algal Toxins – Diverse Challenge

Amnesic Shellfish Poisoning

DomoicAcid

Pseudonitzschia spp<u>.</u>

O THE CONTRACT OF THE OF

Diarrhetic Shellfish Poisoning

OkadaicAcid

Dinophysis spp.

Palytoxin & Ovatoxins

Paralytic Shellfish Poisoning

00

Alexandrium tamarense

Neurotoxic Shellfish Poisoning

Brevetoxin

Karenia brevis

Azaspiracid

Azaspiracid Shellfish Poisoning

Azadinium spinosum

Protoceratium reticulatum

Cyanobacterial Toxins

- Originate primarily in freshwater systems
- Presence in drinking/recreational water and fish considered an emerging health concern
- Persistent global problem increasing in temperate regions due to climate change, e.g. increasing occurrence in northern Canadian communities previously unaffected
- Measurement essential for regulatory monitoring, public health and industry protection, international trade, etc.

WHO Guidelines

Updated in 2022 to include short- and long-term exposure guidelines in drinking and recreational waters based on available toxicology and occurrence data.

Still broad range of regulations and guidelines across different jurisdictions globally.

Cyanotoxin Measurement Challenges

- Diversity of cyanotoxin classes
 - Varying polarity and toxic mechanism •
 - Within-class chemical diversity (e.g. over 300 microcystins) •
- Analytical techniques
 - Chemical, immunochemical, enzymatic and genetic assays all measure • different properties

HN

- Limited resources
 - **Reference** materials ۲
 - Methods for simultaneous analysis of multiple classes ٠

Toxin CRM Process: Overview

Challenges in the development of calibration solutions

- Marine biotoxins and cyanotoxins are rare and difficult to acquire
- Material obtained through laboratory cultures or contaminated samples
- Sometimes only 2-5 mg for entire CRM production
- In the absence of a primary standard, need to demonstrate traceability through potentially unrelated compound

Biotoxin Primary Methods

¹H- Quantitative Nuclear Magnetic Resonance Spectroscopy (qNMR)

- Equal response from protons regardless of structure
- Widely applicable to any H-containing molecule
- Non-destructive, can analyze actual CRM stock solution at mM-level prior to dilution
- Traceability from certified reference materials
 using external calibration

Anal. Chem. 2005, 77, 3123-3131

Quantitative ¹H NMR with External Standards: Use in Preparation of Calibration Solutions for Algal Toxins and Other Natural Products

Ian W. Burton, Michael A. Quilliam, and John A. Walter*

NRC Biotoxin Metrology – dedicated team to marine and freshwater toxin measurements

- Analytical laboratories in Halifax and unique Marine Research Station in Ketch Harbour, Nova Scotia that facilitates large scale cultures
- 16 scientists, 1 researcher emeritus, supporting operations staff, visiting workers and students, led by Dr. Pearse McCarron
- Range of research and measurement science activities in support of algal biotoxin analysis
- Supports nearly 50 calibration solution and matrix biotoxin CRMs, which are distributed globally (www.nrc.ca/crm)

Halifax, Nova Scotia

Ketch Harbour, Nova Scotia

Phytoplankton and cyanobacteria culturing to acquire biomass

K

Some cultures are not amenable to scale-up and are limited to laboratory-scale

NRC Brite-Box systems allow for large-scale cultures with automated lighting and feeding

Calibration Solution CRMs

- Highly pure toxin (low mg amounts)
- Accurate dilutions in ampoules (low µg/mL)
- Primary method value assignment (e.g. qNMR)
- Prepared in accordance with ISO 17034, 17035
- Establish traceability (key for matrix CRMs)
- NRC CRMs for range of cyanotoxins
 - microcystins (5 analogues)
 - nodularin-R
 - anatoxin-a
 - cylindrospermopsin
 - saxitoxins (15 analogues)

Multi-analyte material: CRM-FDMT1

Certificate of Analysis

CRM-FDMT1 (Lot # 20070717)

Freeze-dried Mussel Tissue Certified Reference Material for Multiple Marine Toxins

Marine algal toxins can accumulate in filter-feeding shellfish to levels that are harmful to human health. Monitoring for the presence of these toxins is required to protect consumers and the seafood industry [1,2]. CRM+FDMT1 is a freeze-dried mussel tissue (*Mythius edulis*) containing toxins from six major groups of shellfish toxins. CRM+FDMT1 was prepared by blending containinated mussel tissues and fortifying with cultured algae and purified toxins [3]. Certified values and expanded uncertainties (U_{cma}) have been established for domoic acid, azapriracit-1, 2 and -3, okadic acid, dinophysistoxin-1 and -2, yessotoxin, pectenotoxin-2, and 13-desmethyspirolide C (Tables 1 and 2). Information values have also been assigned for a number of additional analytes from each toxin group (Tables 4 and 5).

Table 1: Certified concentration values and associated uncertainties for CRM-FDMT1.

Compound	Concentration ¹ (mg/kg)
Domoic acid (DA + 5'-epi-DA)	126 ± 10
Azaspiracid-1 (AZA1 + 37-epi-AZA1)	4.10 ± 0.40
Azaspiracid-2 (AZA2 + 37-epi-AZA2)	1.13 ± 0.10
Azaspiracid-3 (AZA3 + 37-epi-AZA3)	0.96 ± 0.10
Okadaic acid (OA)	1.59 ± 0.18
Dinophysistoxin-1 (DTX1)	0.68 ± 0.07
Dinophysistoxin-2 (DTX2)	3.57 ± 0.33
Yessotoxin (YTX)	2.49 ± 0.28
Pectenotoxin-2 (PTX2)	0.66 ± 0.06
13-desmethylspirolide C (13-desMe-SPX C)	2.70 ± 0.26
	•

1 Certified values are based on mass of the freeze-dried powder as received.

Period of validity: 3 years from date of sale Storage conditions: -12 °C or below

Case study: Ciguatoxin – was exclusively a Caribbean issue and now appearing in northern waters with climate change

- Linked to consumption of large fin-fish: amberjack, grouper, snapper, barracuda in tropical & subtropical regions
 - > 425 fish species linked to ciguatera poisoning
- 50,000 500,000 (est.) people affected annually
- Potent sodium channel activator depolarization of nerve cells
 - Symptoms: gastrointestinal, neurological, cardiovascular
 - Generally resolve in weeks, but can last months/years
- Increasing concern worldwide: imported fish, travellers, shipping crews, climate change, increasing water temperatures, etc.

Analytical Challenges of CTXs

- Lack of reference materials for positive confirmation
- Variety of CTX analogues (regional distribution)
- Variety of fish species, trophic levels, other seafood (>425 species)
- · Limited validated analytical approaches with diagnostic features
- Poor ionization efficiency, variation in adduct formation, on-column epimerization/poor peak shape (C-CTXs)

International collaboration (Canada, USA, Norway) to identify source of ciguatoxin

Collection of *Gambierdiscus* spp. from regions surrounding USVI, Caribbean, etc.

Monocultures established and maintained

Screened by N2a for CTX-like activity

Identification of highly toxic strain off coast of St. Thomas

Gambierdiscus silvae 1602 SH-6; 1.5 pg CTX3C eq./cell

Confirmation of C-CTX5 structure

Identification of the source of Caribbean ciguatoxin after nearly 30 years of research in this area

Algal ciguatoxin identified as source of ciguatera poisoning in the Caribbean

Elizabeth M. Mudge^{a,*}, Christopher O. Miles^a, Lada Ivanova^b, Silvio Uhlig^b, Keiana S. James^{c,d}, Deana L. Erdner^e, Christiane K. Fæste^b, Pearse McCarron^a, Alison Robertson^{c,d,**}

^a Biotoxin Metrology, National Research Council, 1411 Oxford Street, Halifax, NS, B3H 3Z1, Canada

^b Chemistry and Toxinology Research Group, Norwegian Veterinary Institute, P.O. Box 64, 1431 Ås, Norway

^c School of Marine & Environmental Sciences, University of South Alabama, 600 Clinic Drive, AL, 36688, USA

^d Marine Ecotoxicology Group, Dauphin Island Sea Lab, 101 Bienville Blvd, Dauphin Island, Dauphin Island, AL, 36528, USA

^e Marine Science Institute, University of Texas at Austin, 750 Channel View Dr, Port Aransas, TX, 78373, USA

Developing Ciguatoxin Reference Materials G. silvae: Growth Conditions

Toxin Production

Growth trials in different media: L1 – 32 ‰ (commonly used in-house media) L1 – 35 ‰ (adjusted with Instant Ocean) K/2 – 35 ‰ (collaborator recommendation)

Growth Curves

Thank you

Jeremy Melanson • Director R&D • Jeremy.Melanson@nrc-cnrc.gc.ca

Pearse McCarron • Biotoxin Metrology • Pearse.McCarron@nrc-cnrc.gc.ca

Beth Mudge • Biotoxin Metrology • Beth.Mudge@nrc-cnrc.gc.ca

nrc.canada.ca • info@nrc-cnrc.gc.ca