

Small field dosimetry for MRgRT: Possibilities and limitations of experimental facilities

CCRI Webinar MRgRT-DOS, 12.09.2023

¹Physikalisch-Technische Bundesanstalt ²Universitätsklinikum Tübingen

PTBI. Experimental facilities

Gap = 10 cm, max B-field = 0.7

DTU

Scintillato

Al203:0

SSD = 95 cm, z_{ref} = 5 cm max. B-field = 1.55 T Pole gaps = 7.3 cm 6MV, Q = 0.682

PTBII. Possibilities

- Possibility to turn magnetic field on and off
- Different magnetic flux densities *B* (0T/0.35T/1.5T) and beam qualities *Q* possible
- (Generate experimental data, compare to Monte Carlo simulation results)
- (Research facilities:)
 - No treatment of patients \rightarrow More time to measure
 - Research Environment \rightarrow more Ressources

 \rightarrow Possibility to not only measure correction factors for different *B* and *Q*, but also investigate general behavior and physical proberties

PBII. Possibilities: general proberties of $k_{Q_{clin}}^B$

Semiflex 31021 6MV CAX (perpendicular) 6MV 1.00 0.98 0.96 Signal Signal - 6x6 . 0.94 Е. 0.92 - 5x5 - 4x4 3x3 2x2 ٠ 0.90 -← 1.5x1.5 ► 1x1 0.88 0.5x0.5 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 B[T]

Farmer 30013 6MV CAX (perpendicular)

Semiflex 31021 8MV CAX (perpendicular)

\sim PTB II. Possibilities: general proberties of $k_{Q_{clin}}^B$

PBII. Possibilities: general proberties of $k_{Q_{clin}}^B$

microDiamond \geq 2.5x2.5 cm² : $k_{Q_{clin}}^B = k_{Q_{clin}}$

PTBII. Possibilities: other examples

• Energy depence of OFs

1.05 1.00 1.00 0.95 0.95 signal . signal 0.85 0.85 0.80 0.80 э. Шоц 0.80 -0.70 0.75 10MV 0.65 ▲ 15MV 15MV 0.70 7MV_Unity_linear_interpolation 7MV_Unity_linear_interpolation 0.60 50 10 20 30 60 70 10 20 30 50 60 70 40 field size [mm] field size [mm] 60019 sqrt(AB): 0T 60019 sqrt(AB): +1.5T pos. Max 1.1 -1.1 1.0 -1.0 -0.9 0.9 norm. signal 2002 signal ... Шоц 0.7 ---- 3:4_y_1.5T_Max_sqrt(AB) ---- 3:4_y_0T_sqrt(AB) 0.6 0.6 2:3_y_1.5T_Max_sqrt(AB) 2:3_y_0T_sqrt(AB) 1:2_y_1.5T_Max_sqrt(AB) 1:2_y_0T_sqrt(AB) 1:4_y_1.5T_Max_sqrt(AB) 0.5 0.5 1:4_y_0T_sqrt(AB) 0 2 3 4 5 0 equivalent field size FMHW [cm] equivalent field size FMHW [cm]

microDiamond: ROF 0T

 Equivalent square field size formula in magnetic fields: Compare to OT microDiamond: ROF 1.5T MAX

PTBII. Possibilities: other examples

PTBIII. Limitations

 Different Setups between experimental facilities caused by technical reasons or choice

 \rightarrow SSD, depth, beam quality

- Different setups compared to MRLinac
 - \rightarrow Different beam quality/spectra, FFF vs. WFF, SSD
 - →Positioning parallel to magnetic field lines often not possible due limted space between pole shoes
- Measurements with different *B*, *Q*, detectors and positioning very time consuming

 \rightarrow To make results relevant for MRLinacs, every different parameter has to be investigated if it has an influence and if yes then it needs to be corrected for

PTBIII. Limitations: different beam qualities

ROF: PTB vs. MR-Linac Elekta Unity

Figure 17: Comparison of the ROF curves obtained at the Elekta Unity-MRI-linac and at PTB's experimental Figure 19: Comparison of the ROF curves obtained at the Elekta Unity-MRI-linac and at PTB's experimental facility for an ionization chamber of type PTW 31022 positioned at CAX with a magnetic field B = 1.5°T. facility for an ionization chamber of type PTW 31022 positioned at MAX with a magnetic field B = 1.5°T.

→ Good agreement (except 0.5x0.5cm²)
→ PTB-Data useable from 5x5cm² to 1x1cm²?

PTBIII. Limitations: different beam qualities

- In TRS483, correction factors for general energies, e.g. "6MV "
- \rightarrow not corrected for different Q
 - \rightarrow bigger uncertainty

TABLE 26. FIELD OUTPUT CORRECTION	FACTORS $k_{Q_{in}}^{f_{dis}f_{max}}$ FOR FIELDS COLLIMATED BY AN MLC OR SRS
CONE AT 6 MV WFF AND FFF MACHINES, J	S A FUNCTION OF THE EQUIVALENT SQUARE FIELD SIZE

Detector	Equivalent square field size, S_{clin} (cm)												
	8.0	6.0	4.0	3.0	2.5	2.0	1.5	1.2	1.0	0.8	0.6	0.5	0.4
Ionization chambers													
Exradin A14SL micro Shonka slimline	1.000	1.000	1.000	1.000	1.000	1.002	1.010	1.027	_	_	_	_	_
Exradin A16 micro	1.000	1.000	1.000	1.000	1.001	1.003	1.008	1.017	1.027	1.043	—	_	_
IBA/Wellhöfer CC01	1.002	1.004	1.007	1.008	1.008	1.009	1.011	1.013	1.018	1.027	1.047	_	_
IBA/Wellhöfer CC04	1.000	1.000	1.000	1.000	1.000	1.002	1.009	1.022	1.041	_	_	_	_
IBA/Wellhöfer CC13/IC10/IC15	1.000	1.000	1.000	1.001	1.002	1.009	1.030	_	_	_	_	_	_
PTW 31002 Flexible	1.000	1.000	1.001	1.004	1.009	1.023	_	_	_	_	_	_	_
PTW 31010 Semiflex	1.000	1.000	1.000	1.001	1.002	1.008	1.025	_	_	_	_	_	_
PTW 31014 PinPoint	1.000	1.000	1.000	1.002	1.004	1.009	1.023	1.041	_	_	—	_	_
PTW 31016 PinPoint 3D	1.000	1.000	1.000	1.001	1.001	1.004	1.013	1.025	1.039	_	_	_	_

PBIII. Limitations: high Uncertainties for field sizes <1cm²

PTW 60019 microDiamond detector

FIG. 7. Uncertainty contribution to the absorbed dose determination using a PTW 60012 diode due to a uniformly distributed displacement error of 1 mm in all directions perpendicular to the beam axis only calculated by Monte Carlo (reproduced from Ref. [46] with the permission of IOP Publishing).

TRS 483, Dosimetry of Small Static Fields Used in External Beam Radiotherapy , Vienna, 2017

Fig. 11. Summary of recently published data on the microDiamond output correction factor referring to a depth of 5 cm in 6 MV small field photon beams. left: output correction factors taken into account in the international document IAEA TRS 483^1 (redrawn for a depth of 5 cm); the thick continuous line represents a fit to all data. right: data on the output correction factor from a variety of publications showing a clear increase with decreasing field size (right side); with the exception of the data by Poppinga et al.¹⁴, all reference detector data have been obtained by a MC simulation; blue: diamond data have been measured; green: diamond data have been obtained by a MC simulation; red: results of this work; thick continuous line identical to the fit in the left figure. [Color figure can be viewed at wileyonlinelibrary.com]

Hartmann and Zink, A Monte Carlo study on the PTW 60019 microDiamond detector, Med. Phys. 46 (11), November 2019

 \rightarrow Better data with slightly different parameters then no data!

PTB IV. Summary

- **Possibilities:** Experimental Facilities can measure with different *B* and *Q*, therefore investigate general behavior and physical proberties of correction factors, profiles, PDDs etc. in more detail
- Limitation: Measurements not at an MRLinac, different setup parameters has to be considered
- Work in progress: EMPIR-data needs to be further evaluated

IR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States

Physikalisch-Technische Bundesanstalt

- Bundesallee 100
- 38116 Braunschweig
- **Stephan Frick**
- Phone: 0531 592-6422
- E-Mail:
- Stephan.Frick@ptb.de www.ptb.de

