

Overview of MRI-Linac Technology

PhD student: **Surla Sonja** PhD supervisor: **Prof. Dr. Christian Karger** German Cancer Research Center (DKFZ)

s.surla@dkfz.de

Heidelberger Institut für Radioonkologie

GERMAN CANCER RESEARCH CENTER IN THE HELMHOLTZ ASSOCIATION

Research for a Life without Cancer

MRI-Linacs : Rationale and Benefits

Radiotherapy (RT):

Delivering optimized dose distribution Right dose at the right place.

Imaging:

Radiotherapy relies on imaging technology

Image-guided Radiotherapy (IgRT):

- Imaging before and/or during the irradiation:
 - adjustments to patient's position
 - adaption of the treatment plan (adaptive radiotherapy, ART)

Motivation: Online Adaptive RT

- Advantages:
 - visualizing anatomical changes during RT
 - treatment plan adaptation
 - beam-on motion monitoring : gating/tracking
- Advantages of MRI:
 - high soft tissue contrast
 - no additional imaging dose

MRI-Linac : possible configurations

Paganelli et al., 2018

MRI-Linac : parallel (in-line) configuration

MagnetTx Aurora RT[™]

6 MV/0.5 T

- Rotating magnet
- > FDA clearance (May 2022)

The Australian MRI-Linac

6 MV/1.0 T

- Both perpendicular and in-line orientation possible
- Research prototype

Keall et al., 2014

MRI-Linac : perpendicular configuration

Shielding between MRI and Linac

ViewRay MRIdian: split magnet

Cryostat-/Coil-Attenuation: ca. 10.0%

- Irradiation through gap in split magnet
- Passive MF shielding
- gantry contains buckets that shield both MF and RF •

Elekta Unity : non-split magnet

- Irradiation through cryostat with split coils
- Active MF shielding (shield coils with • opposite polarity)
- RF shielding: cryostat in Faraday cage

Beam characteristics

ViewRay MRIdian Linac

- 6 MV FFF Linac with 6 Gy/min@ 90 cm SAD
- double stacked / double focus MLC
- stacks are shifted by half a leaf width
 max. field size (27.4 x 24.1) cm²
 min. field size (0.2 x 0.415) cm²

Elekta Unity

7 MV FFF Linac with 4 Gy/min
@ 143.5 cm SAD

single focus MLC + jaws

- ➤ max. field size (57.4 x 22.0) cm²
- ➢ min. field size (0.5 x 0.5) cm²

Two different MLC configurations for a 4.15mm wide beam S.Klueter, Heidelberg University Hospital

MR imaging

MRI is used for patient positioning and treatment planning

ViewRay MRIdian Linac 0.35 T Elekta Unity 1.5 T

- Higher MF:
 - Higher signal-to-noise ratio
 - > Higher MF effects on dose distribution
- · MRI-coils included in the immobilization process

Med. Phys. 44 (9), September 2017

Cine MR real time imaging during treatment

Kim et al.: Patient-controlled gating system for MR-IGRT

9/13/2023 | Page 8 s.surla@dkfz.de

Plan adaptation workflow

Simulation

Patient immobilization at MR-Linac

3D MR-Scan at MR-Linac

[2D Cine MR-Scan]

CT-Scan ➤ Electron density

Treatment planning

Plan verification

Adapted from S. Klueter and S. Dorsch, Heidelberg University Hospital ViewRay MRIdian

Verification MR-Scan

Daily MR-Scan

Deformable image registration, contour checks

Image registration + determination of setup error

Dose prediction based on the daily image

Treatment

Setup correction by couch movement

Plan adaption

Online plan QA

[Definition of gating structure and margins]

Irradiation [with cine MRI-gating]

9/13/2023 | Page 9 s.surla@dkfz.de

MRI-Linacs: Challenges

- MR safety measures
 - Clothing?, Tattoos?, Piercings?(Medical) implants

(a) B = 0 T

- Double training of staff
- Room shielded for both MRI and RT
- Limited space within the MRI bore
- Long treatment time (up to 1.5 h)
- Dosimetry in MF the main challenge
 - MRI compatible devices
 - Positioning of the water phantom

GERMAN CANCER RESEARCH CENTER IN THE HELMHOLTZ ASSOCIATION

50 Years – Research for A Life Without Cancer

HEIDELBERG UNIVERSITY HOSPITAL The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States

	ViewRay MRIdian	Elekta Unity
Energy	6 MV, FFF	7 MV, FFF
Cryostat-/Coil-Attenuation	ca. 10.0%	56.3%
SAD	90 cm	143.5 cm
Dose rate	6 Gy/min	4 Gy/min
Field size	27.4 cm(LR) x 24.1 cm(IS)	57.4 cm(LR) x 22 cm(IS)
MLC	8.3 mm, stacked, double focus	7.1 mm, single focus
MLC Orientation	Cross-plane	In-plane
Table positioning	3D	1D
EPID for MV Imaging	No	Yes
Treatment planning system	ViewRay	Monaco

Adapted from S. Dorsch, Heidelberg University Hospital

