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Effect of the magnetic field 

• The electron trajectory depends on: 

•  Medium properties.   

• Strength and direction of the B-field. 
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Air, 1.5 TWater, 1.5 TWater, 0 T

• Modification of 
radiation field.  

• Modification of 
detector signal. 

⃗FL = − e ⋅ ⃗v × ⃗B

• The B-field influences the electron motion via the Lorentz force:



Electron fluence perturbation in MRgRT 
beams

The presence of any radiation detector perturbs the particle 
fluence at the point of measurement. Depending on: 

• Detector geometry and composition.  

• Irradiation conditions such as beam energy, field size 
and magnetic field. 
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• To provide physical insights on the 
effects of magnetic fields on detector 
response.  

• To calculate detector perturbation 
factors in MRgRT beams of multiple field 
sizes.

• To evaluate the magnetic field effect on 
the electron fluence spectra in several 
types of detectors.  



Determination of perturbation factors
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PMC = PextPmedPρ =
Dw,cav

Ddet

Pρ =
Dw,cav

Dw*,cav

Ddet Dw, cav

PρPext ⋅ Pmed

Dw*, cav

Pvol

Dw

Bouchard et al (2015) formalism to determine the perturbation factors: Pi =
Di+1

Di

( Z
A )i

( Z
A )i+1

Pvol =
Dw

Dw,cav

• : Overall perturbation factor  

• : Density perturbation factor    

• : Volume averagingfactor

PMC
Pρ

Pvol



Monte Carlo simulations
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Detector

Solid State Detectors 
(SSD) 

Ionization Chambers (IC)

PTW60012 PTW60019 PTW31022 PTW31021 PTW31010

Density  
[g cm-3]

2.33 3.53 1.205 x 10-3 1.205E-3 1.205E-3 

Sen. vol. 
diameter 

[mm]

1 2.2 2.9 4.8 5.5

Sen. vol. length 
[mm]

0.030 0.001 2.9 4.8 6.5

7 MV FFF  
photon beam 

Square field 

143.5 cm

10 cm

30 x 30 x 30 cm3

●
⃗B

Not to scale

0 T and 1.5 T

Dead 
volume

Ionization chamber 
models 

 Field widths: 10, 5, 3, 2, 1, 
0.75, 0.5 and 0.25 cm. 



Detector orientation

7

𝛾 beam

⃗B●

e-

2

⃗FL

𝛾 beam

⃗B●

e-

1

⃗FL

 Perpendicular to B-field 
Anti-parallel to the beam 

Perpendicular to B-field 
Perpendicular to beam 

𝛾 beam

⃗B●

e-

3

⃗FL

Perpendicular to B-field 
Perpendicular to beam 

𝛾 beam

⃗B●

e-

4

⃗FL

Parallel to B-field 
Perpendicular to beam 

7 MV FFF  
photon beam 

Square field 

143.5 cm

10 cm

●
⃗B



Results
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Density perturbation factor:  Pρ

9

IC

SSD

{
{

Effect of the magnetic field 

• For the chambers,   is one of the dominating perturbation factors in 

small fields with and without B-fields.  

• For the SSD, the B-field effect on  is 1% or less.

Pρ

Pρ
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Overall perturbation factor: PMC = PextPmedPρ

SSD are affected by the B-
field at large field sizes

IC are affected by the B-
field at small field sizes

microDiamond is affected by 
the B-field at large field sizes

IC are affected by the B-
field at small field sizes

IC are affected by the B-field 
at small field sizes

SSD: Constant B-field effect 
over all field sizes 

IC are affected by the B-field 
at small field sizes

B-field effect is mostly constant 
and slightly decreases for the 

smaller fields

Effect of the magnetic field 

⃗B

𝛾 beam

⃗B

𝛾 beam

⃗B

𝛾 beam

⃗B

𝛾 beam

IC

SSD

{
{



Volume averaging factor:    Pvol

• For SSD and chamber (PTW31010), the B-

field effect on   is of 1% or less from 

unity in all orientations an independent of 
field size. 

Pvol
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For spherical IC,  the B-field effect 
decreases with decreasing field 
size.   

For spherical IC, the B-field effect 
increases with decreasing field size.   

Effect of the magnetic field 

⃗B

𝛾 beam

⃗B

𝛾 beam

⃗B

𝛾 beam

⃗B

𝛾 beam

IC

SSD

{
{



Electron fluence spectra in IC

12 *Vertical line: energy at which the gyration radius equals the cavity diameter
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Electron fluence spectra in SSD
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*Vertical line: energy at which the gyration radius equals the cavity diameter
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Conclusions

• This study quantifies the B-field effect on detector dose response in small fields  
by isolating different perturbation factors.  

• Solid-state detectors dose response is strongly affected by the magnetic field in 
all orientations, especially in orientation 1. The perturbation is mainly attributed 
to the extracameral components. 

•  For ionization chambers, the magnetic field predominantly affects the density 
perturbation factor.  

• The B-field influence on Pvol is notable on spherical ionization chambers solely 
in orientations 2 and 3 
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