

ComTraForce – EMPIR project for continuous and dynamic force measurements

19th meeting of CCM – 25.-26. May 2023 Frank Hauschild

Project coordinator: Dr. Rolf Kumme (PTB) E-Mail: comtraforce@ptb.de

Project Structure

Sept. 2019

26/May/2023

F. Hauschild

Key Objectives

Review of existing testing machines and standards

Developing advanced models and digital twins of force measuring devices

Developing a force traceability chain for metrological services for static, continuous and dynamic forces

Developing new recommendations and standards for static, continuous and dynamic forces

Facilitation of the take up of the developed procedures for end users

The **overall aim** of the project was to provide calibration services, in the field of mechanical and material testing, with the methods and guidelines needed for comprehensive traceability of static, continuous and dynamic force measurements.

26/May/2023 F. Hauschild ComTraForce – EMPIR project for continuous and dynamic force measurements

WP1 Roadmap

Source: https://www.ptb.de/empir2019/fileadmin/documents/empir-2019/ComTraForce/documents/04_Deliverables/ComTraforce_D1.pdf

26/May/2023

F. Hauschild

WP 2 Selection of the Transfer Standards

Manufacturer information of the force transducer to be examined

Piezoelectric force transducer – A_{PK} / ©Kistler

Strain gauge force transducer – B_{DMS} / ©GTM

		A _{PK}	B _{DMS}	C _{DMS}	D _{DMS}
Nominal force	Fnom	20 kN	20 kN	25 kN	25 kN
Measuring range		0.1 - 100 %	10 - 100 %	2 - 100 %	10 - 100 %
Interpolation error	f _c	0.5 % FSO	0.02 %	0.02 % FSO	0.04 %
Hysteresis	v		0.06 %	0.025 % FSO	0.09 %
Rotation	b		0.045 %		0.05 %
Repeatability	b'		0.023 %	0.005 %	0.02 %
Zero point deviation	f ₀		0.01 %		0.01 %
Creep			0.01 %	0.01 % in 20 min	0.01 %
Temperature error on the characteristic value	ΤK _c	-0.02 %/K	0.001 %/K	0.0005 %/K	0.0015 %/K
Temperature error on the zero signal	TK ₀		0.001 %/K	0.00025 %/K	0.00075 %/K
mass	m	0.33 kg	3.1 kg	4.1 kg	3.3 kg
Nominal temperature range	B _{T, nom}		17 to 27 °C	-10 to 45 °C	-10 to 45 °C
Operating temperature					
range	B _{T, G}	-40 to 120 °C	10 to 35 °C	-55 to 90 °C	-30 to 85 °C
Fundamental frequency	f _G	45 kHz			5.3 kHz
Rigidity	N/S	1.6 kN/μm			0.417 kN/µm

- Amplifier for strain gauge: DMP 40 and DMP 41 from HBM Dewetron DAQP- STG, Bridge-B
- Amplifier for PK: MGC Plus with ML01B (Voltage measurement)
- Charge amplifier for PK: Typ 5011B from Kistler

Strain gauge force transducer - C_{DMS}

Strain gauge force transducer – D_{DMS} / ©HBM

WP 2 Advanced Model Static - Strain Gauge ComTraForce

WP 2 Advanced Model Static - Strain Gauge ComTraForce

26/May/2023

WP 2 Advanced Model Static - Piezoelectric ComTraForce

WP 2 Advanced Model Continuous

WP 2 Advanced Model Continuous

26/May/2023

WP 2 Dynamic Force Measurement

Frequency dependency of the sensitivity

WP 2 Dynamic Force Measurement

• Setup

26/May/2023

F. Hauschild

WP 2 Dynamic Force Measurement

Different methods of the acceleration measurement

Definition of the stiffness and damping coefficient

Measurement : sided Position: on the shaker Sensor : Piezoelectric No. of signal : 1 Top / 1 Bottom

26/May/2023

F. Hauschild

WP 2 Advanced Model Dynamic

Source: https://www.ptb.de/empir2019/fileadmin/documents/empir-2019/ComTraForce/documents/04_Deliverables/ComTraForce_D2.pdf

WP 2 Digital Twin

Source: https://www.ptb.de/empir2019/fileadmin/documents/empir-2019/ComTraForce/documents/04_Deliverables/ComTraForce_D3.pdf

26/May/2023

WP 3 Traceability Chain Static / Continuous

Diagram demonstrating force against time profiles for four different steel testpieces

26/May/2023

ComTraForce

WP 3 Proposed force traceability method

Step 1

Develop continuous force calibration reference standard

- Top class force transfer standard, based on static calibration results
- Additional short-term creep test and associated performance criteria

Step 2

Calibrate proving instrument against reference standard

- Range of force application rates, determine sensitivity differences
- Proving instrument also to be calibrated statically

Step 3

Use proving instrument to calibrate testing machine force display

- Range of force application rates, determine machine errors
- Care needed in data synchronisation

National Physical Laboratory

ComTraForce

F. Hauschild

ComTraForce – EMPIR project for continuous and dynamic force measurements

WP 3 Proposed force traceability method

Methodology for continuous calibration of testing machine force indicator has been developed

- Reference standard criteria proposed
- Proving instrument calibration procedure
- Testing machine calibration procedure

Issues identified to have major effect on results

- Data synchronisation procedure should be as automated as possible
- Instrumentation settings

Traceability Chain for Multicomponent Forces and Moments

A multicomponent force and moment transducer (MCFMT) during calibration

Source: https://doi.org/10.5281/zenodo.7844513

26/May/2023

F. Hauschild

WP 4 Traceability Chain Dynamic

F. Hauschild

WP 4 Traceability Chain Dynamic

Source: https://www.ptb.de/empir2019/fileadmin/documents/empir-2019/ComTraForce/documents/04_Deliverables/ComTraForce_D5.pdf

26/May/2023

F. Hauschild

WP 5 Procedures & Recommendations

State of the art: force standard machines for static forces

National Metrology Institute

Accredited Calibration Laboratory using Transfer Standards

Calibration Laboratory using Reference Standards

Inhouse Calibration Laboratory Using Working Standards

Inspection and Measurement Instruments in Industry

Metrological Infrastructure

Industry

 Develop calibration procedure for continuous and dynamic loads in testing machines

 Validation of the procedures

static force calibration of testing machines

force transfer standards

& measurement

procedures for static

forces

Aim of ComTraForce:

developments for traceable

continous & dynamic forces

force transfer standards &

measurement procedures

for continous & dynamic

forces

continuous & dynamic

force calibration of

testing machines

WP 5 Procedures & Recommendations

Impact by Networking

DSI Standards Development

UCAS

26/May/2023

F. Hauschild

- Traceable validated methods for continuous time-dependent forces
- Traceable validated methods for measuring dynamic forces
- Development of advanced force measurement devices with input to industrial market
- Developed methods and techniques enable compensation of dynamic and temperature influences
- Calibration laboratories can extend their accreditation to continuous and dynamic forces
- The project is successful because force traceability is extended from static to continuous and dynamic force through comprehensive traceable force measurement methods

The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States

WG 1.23 - Force Measuring Technique Frank Hauschild Bundesallee 100 38116 Braunschweig Email: comtraforce@ptb.de Phone: +49 531 592-1179