Recent developments of tabletop Kibblebased technologies at NIST: a step towards commercialization

National Institute of Standards and Technology U.S. Department of Commerce CCM May 25 2023 Dr. Darine Haddad

New SI mass scaling at NIST/PREME Team NGT

NIST-4 Kibble Balance

- NIST primary realization to parts in 10⁸ uncertainty
- Primary realization of masses from 50g to 2kg
- 2016 pilot study
- 2017 Planck constant publication
- 2019, 2021 Key comparison and future ones

The LEGO Kibble Balance (2014)

1000g

0.000001% uncertainty

10 % fun

1g - 10 g

1 % uncertainty

100 % fun

*Thanks Terry Quinn, BIPM

LEGO Kibble Balance Outreach (2015)

Produced by Jenny Lee, PML, NIST

A PUBLICATION OF THE AMERICAN ASSOCIATION OF PHYSICS TEACHERS Available online-visit http://aapt.org/ajp

Part Name	Part No.	Quantity Tota	l Price (\$)
Custom LEGO Watt Balance Software	$Contact\ leon.chao@nist.gov$	1	Free
Order from http://shop.lego.co	m/en-US/Pick-A-Brick-ByTh	ieme	
Brick 2x4	300101	65	19.50
Brick 2x8	6033776	73	36.50
Brick 1x2 with cross hole	4233487	12	4.20
T-Beam 3x3 w/hole O4.8	4552347	2 16	0.60
Technic Brick 1x2 O4.9 Technic Brick 1x4 O4.9	370026 4211441	48	2.40 12.00
Technic Brick 1x4 O4.9 Technic Brick 1x6 O4.9	389426	48	0.80
Technic Brick 1x8 O4.9	4211442	2	1.00
Technic Ang. Beam 3x5 90 Deg.	4211713	2	0.60
Plate 8x8	4210802	9	9,90
Plate 1x2	4211398	15	1.50
Plate 1x4	4211445	10	1.50
Plate 2x3	4211396	6	1.20
Cross Axle 2M W. Groove	4109810	8	0.80
Cross Axle 3M	4211815	6	0.14
Cross Axle 5M	4211639	6	1.20
Cross Axle 8M	370726	8	1.60
Bush for Cross Axle	4211622	14	2.10
1/2 Bush for Cross Axle	4211573	28	2.80
Double Bush 3M O4.9	4560175 303926	6 4	1.20 0.80
Roof Tile 2x2/45 deg			
Roof Tile 2x2/45 deg Inv.	366026 4211106	2 2	0.40
Roof Tile 2x3/25 deg Roof Tile 2X3/25 deg Inv.	374726	4	0.40
Connector Peg W. Friction 3M	4514553	8	2.00
Connector Peg/Cross Axle	4666579	6	0.60
Catch w. Cross Hole	4107081	8	1.60
Flat Tile 2x4	4560178	4	1.20
Hinge 1x2 Lower Part	383101	6	1.50
Hinge 1x2 Upper Part	6011456	6	1.50
Double Conical Wheel Z12 1M	4177431	2	0.60
Angle Element, 180 Degrees [2]	4107783	2	0.40
	trbricks.brickowl.com/		
Technic Beam 1 x 4 x 0.5 with Boss	2825 / 32006	6	0.30
Technic Beam 2 Beam w. Angled Ball Joint	50923 / 59141	2	0.13
Beam 5 x 0.5	32017	4	0.76
Wedge Belt Wheel	2786 / 4185	4	1.00
Gear with 8 Teeth (Narrow)	3647	2	0.20
Onder from http://theta			
Universal Joint	pecialbrick.brickowl.com/ 61903	2	0.94
Gear with 16 teeth	94925	22	0.34
Bevel Gear with 12 teeth	94925 6589	2	0.34
Devel Geal with 12 teeth	0565	2	0.20
Order from http://	www.labjack.com/u6		
Multifunction DAQ with USB - 16 Bit	U6	1	299.00
•			
Order from http:/	/www.phidgets.com		
PhidgetAnalog 4 Output	1002_0	1	90.00
Order from http:	//www.apinex.com		
Focus. Line Red Laser Module <1mW	YCHG-650	1	15.00
Line Laser Module (650nm) - <1mW	LN60-650	1	15.00
0.1.6			
Photodiode 7.98mm Dia Area	//www.mouser.com 718-PC50-7-TO8	1	61.63
USB Cables USB A - MINI-B	538-88732-8702	1	1.65
USB A-TO-B Shielded 2.09m	538-88732-9200	1	3.58
Low signal Relay	769-TXS2-4.5V	1	4.58
Resistors 2400hms	291-240-RC	1	0.10
Resistors 330ohms	291-330-RC	4	0.40
Resistors 15000hms	291-1.5k-RC	1	0.10
Linear Voltage Regulators	511-LM317T	i	0.72
Order from http://w	www.magnet4less.com		
N48 grade - 3/4 (OD) x 1/4 (ID) x 3/4 in. ring magnet		4	15.96
Order from http://	www.mcmaster.com		
Brass Threaded Rod - 1/4"-20 Thread, 1' length	98812A039	1	2.65
White PVC Pipe Fitting	4880K53	2	1.00
White PVC Unthreaded Pipe	48925K93	1	5.27
Tetel			699 77
Total			633.77

LEGO Kibble Balance Builders of the World NST

U of Halmstad, Sweden San Carlos school, CA NIM, Thailand Cal State San Bernardino, CA Wofford College, SC École Polytechnique, France Masy, MA Infiltec, MD Youtube "Practical Engineering" Pohang Unviersity, Korea Nevada Dept. Agriculture University College London, Englard NMISA, South Africa U of Pittsburg, PA Johannesburg, South Africa Johns Hopkins U, MD Dutch Metrology Institute, Nethe lands St. Lawrence U, NY Public high school, Italy Measurement Standards Lab, New Zealand U of Waterloo, Canada Avery County Public Schools, NC Canisius College, NY Albuquerque High School, NM U of Helsinki, Finland Central Office of Measures, Warsaw Cal State East Bay, CA Sydney, AU NIST, MD Greenwich High School, CT

NIST's path forward in modernizing commercial mass metrology.

- ***** = optimal point to begin endeavor
 - No vacuum required
 - No need for quantum standards
 - Tabletop-sized instrument & low complexity
 - Compete with commercial OIML class E2 gram-level mass standards
 - Uncertainty on the order of parts in 10⁶
 - New area of research

Present state of Mass Dissemination

NIST

Truncate the traceability chain

Mass Metrology Lab

Realize and Disseminate gramlevel masses In the comfort of your own laboratory!

KIBB-g1 (2017-2019)

NIST first generation tabletop Kibble balance

Target:

- (1) Nominal values: between 1 g–10 g
- (2) Relative uncertainties: single digit ppm
- (3) Form factor: 'tabletop' sized instrument
- (4) Convenience: operates in air (no vacuum required)
- (5) Cost: <50 000 USD.

Uncertainty Budget

OPEN ACCESS

Metrologia 57 (2020) 035014 (10pp)

Metrologia

https://doi.org/10.1088/1681-7575/ab507d

The performance of the KIBB-g1 tabletop Kibble balance at NIST

Leon Chao[®], Frank Seifert[®], Darine Haddad[®], Jon Pratt[®], David Newell[®] and Stephan Schlamminger[®]

National Institute of Standards and Technology, 100 Bureau Dr., Gaithersburg, MD 20899, United States of America

E-mail: leon.chao@nist.gov

Received 28 August 2019, revised 2 October 2019 Accepted for publication 23 October 2019 Published 14 May 2020

COMPARISON OF E2 MASS VS. KIBB-G1 MASS REALIZATION RELATIVE UNCERTAINTIES

	5 g mass	1 g mass
$\Delta {\rm m}_{E2}/{\rm m}_{E2}\times 10^6$	2	5
$\Delta {\rm m/m} imes 10^6$	1.8	6.3

TABLE I KIBB-g1 Uncertainty Budget. All uncertainties are $\times 10^{-6}$

Source	5g m	easurement	1 g me	easurement
	Item	Subtotal	Item	Subtotal
Laser Stability/Accuracy	0.0		0.0	
Deadpath Error	0.0		0.0	
Optics Thermal Drift	0.0		0.0	
Electronics Error	0.1		0.1	
Interferometer Readout		0.1		0.1
Abbe Error	0.0		0.0	
Off Axis Motions	0.0		0.0	
Cosine Error	0.1		0.1	
Alignment		0.1		0.1
Timing Jitter	0.0		0.0	
Wavelength Compensation	0.2		0.2	
Velocity		0.2		0.2
Field Gradient	0.0		0.0	
Material Thermal Expansion	0.4		0.4	
Coil Z Position		0.4		0.4
Statistical		0.7		2.8
BL Interpolation	0.2		0.2	
Individual BL Profile	0.7		0.7	
Profile Fitting		0.7		0.7
Resistor	0.1		0.1	
DVM (Force Mode)	0.4		0.4	
DVM (Velocity Mode)	0.4		0.4	
Electrical		0.8		0.8
Magnetic Susc. of Mass	0.0		0.0	
Balance Sensitivity	0.0		0.0	
Buoyancy	0.1		0.1	
Balance Mechanics	0.2		1.0	
Gravity	0.3		0.3	
Magnet Nonlinearity	0.4		0.4	
Air Bearing Pressure	1.1		5.4	
Forces on mass		1.2		5.5
Total		1.8		6.3

KIBB-g1 inducted into the NOAC program (2020) NIST

Introduction

- The Technology
 - Time and Frequency
- Magnetic and Electric Fields
- Thermodynamics
- **Dimensional Metrology**
- Fluid Measurements Mass, Force and Acceleration
- Current and Voltage
- Quantum Optics and
- Radiometry

Radiation

NIST On A Chip

Barbara Goldstein, Program Manager barbara.goldstein@nist.gov∞

Jay Hendricks, Deputy Program Manager jay.hendricks@nist.gov[™]

* Not quite on a chip, but at least on a table

US Dept. of Defense Interest (summer 2020) NIST

- Army USATA (Test, Measurement, Diagnostic Equipment Activity) SOW on KIBB-g2: 3 year funding for a the development of the next generation tabletop Kibble balance with a focus on design for commercialization at OIML Class F2 uncertainties
- AFMETCAL (Air Force Metrology and Calibration) SOW on torque realization: 3 year funding for the development of an absolute standard having a dynamic range of 0.1 142 in-ozf with 0.1% uncertainty

NIST PREME

Second Generation Tabletop KB, KIBB-g2

KIBB-g1

Goal: Construct a second generation tabletop Kibble balance for directly realizing [500 mg – 20 g] masses with ASTM Class 3 accuracies (OIML Class F2)

- US Army Funded
- Flexure-based mechanics
- Commercial voice coils
- Commercial optical encoder

300 mm

Kibble Principle for Torque

Self-Calibration Mode

$\mathbf{V} = \mathbf{B}(\boldsymbol{\varphi})\mathbf{L}\mathbf{r}\dot{\boldsymbol{\varphi}}$

Spin Mode

Measurement Mode

Torque Mode

$$\tau = I \frac{V}{\dot{\phi}}$$

Electronic NIST Torque Realizer (ENTR)

Create an absolute small torque standard with range:

NIST

0.1 in ozf – 142 in ozf (7 x 10⁻⁴ N m – 1 N m)

and uncertainty of:

Mobile base plate

<mark>0.1%</mark> (7 x 10⁻⁷ N m)

Utilizing commercial components

<u>Disclaimer</u>: Certain commercial equipment, instruments, and materials are identified in this presentation in order to specify the experimental procedure adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the materials or equipment identified are necessarily the best available for the purpose.

QEMMS as an NMI in one lab

- 1. Kibble balance
- 2. Graphene quantum Hall array resistance standard
- 3. Programmable Josephson voltage system (PJVS)
- 4. Absolute gravimetre
- 5. Caesium clock time standard
- 6. Iodine stabilized HeNelaser length standard

→ Quantum Electro-Mechanical Metrology Suite: time, length, mass, electric current, voltage, electric resistance

Vision for the QEMMS Kibble balance

- Balance smaller and more compact than NIST-4: makes parts structurally stiffer and allows for reduction of components/complexity
- Measuring mass between 10 g 200 g with absolute uncertainty of 2 μg at 100 g
- Open-source hardware and software to replicate the balance
- Comparable in size to a commercial high precision vacuum 1 kg mass comparator
- Ability to measure multiple masses withouth breaking vacuum → in vacuum mass exchange and storage
- QEMMS will be ready end of 2025, and will be also another US primary realisation

Direct Mass Realization Capabilities at NIST from 50 µg to 2 kg

Measurement Range					
50 μg – 20 mg	500 mg – 20 g	10 g – 200 g	50 g – 2 kg		
Relative Uncertainty					
1 x 10 ⁻⁴ – 7 x 10 ⁻⁶	5 x 10 ⁻⁵ – 5 x 10 ⁻⁶	5 x 10 ⁻⁸ – 2 x 10 ⁻⁸	3 x 10 ⁻⁸ – 1 x 10 ⁻⁸		
Relative Cost					
\$\$\$	\$	\$\$\$	\$\$\$\$		
Target Users					
National Lab	Calibrations Lab	Calibrations/National Lab	National Lab		