Determination of the fine structure constant with atom interferometry

Pierre Cladé
Fine structure constant:

$$\alpha = \frac{e^2}{4\pi \epsilon_0 \hbar c}$$ \hspace{1cm} (1)

- Magnetic moment of electron: \(g_e = 1 + C_1 \left(\frac{\alpha}{\pi} \right) + C_2 \left(\frac{\alpha}{\pi} \right)^2 + \ldots \)
- Measurement \(g_e \), determination of \(\alpha \), test of QED
Introduction

Rydberg constant:

\[hR_\infty c = \frac{1}{2} m_e c^2 \alpha^2 \Rightarrow \alpha^2 = \frac{2R_\infty}{c} \times \left(\frac{h}{m_e} \right) \]

(2)

Mass ratio are well measured: \(m_e \rightarrow m_{Rb} \)

Outlook:

- The “\(h/m \)” constant
- Principle of the experiment
- Discussion on systematic effects
Conversion factor for energies

- \(h\nu = mc^2 \) (Compton frequency)
- \(h\nu = \frac{1}{2} mc^2 \alpha^2 \) (Rydberg frequency)
- \(h\nu = \frac{1}{2} mv_r^2 \) (Recoil frequency)
- \(h\nu = mg\lambda \) (Bloch frequency)

Constant of quantum mechanics

\[
i \frac{\partial \psi}{\partial t} = -\frac{\hbar}{2m} \frac{\partial^2 \psi}{\partial x^2}
\]

(3)

“Diffusion coefficient” of the Schrödinger equation \((m^2.s^{-1})\)
Redefinition of the S.I.

Macroscopic \((M)\) to microscopic experiments \((m\) and \(h)\):

- Watt balance: measurement of \(h/M\)
- Silicon sphere: measurement of \(M/m\)

The link is done with a measurement of \(h/m\)

\[
\frac{h}{m} [m^2.s^{-1}] \times 10^{15} \approx 3.99031271 \times 10^8
\]

After the redefinition: link between AMU and SI.
Dispersion relation

Non relativistic equations:

\[i \frac{\partial \psi}{\partial t} = -\frac{\hbar}{2m} \frac{\partial^2 \psi}{\partial x^2} \Rightarrow \omega = \frac{\hbar}{2m} k^2 \]

(4)

- Second derivative
- \(k_A \) and \(k_B \): photon recoil
- Atom recoil
- Doppler effect
- Atom interferometer
Atom light interaction

\[|b\rangle \]
\[E = h \nu \]
\[p = \pm \hbar k \]
\[|a\rangle \]

\[m \]
\[\nu_1 \]

\[\nu_r = \hbar k / m \]
Atom light interaction

\begin{align*}
|b\rangle & \quad \downarrow \quad 1 \\
E &= h\nu \\
p &= \pm \hbar k \\
|a\rangle & \quad \uparrow \quad 2 \\

\text{Spontaneous emission}
\end{align*}

$\nu = ??$
Atom light interaction

\[|b\rangle \quad E = h\nu \quad p = \pm \hbar k \]

\[|a\rangle \quad 1 \]

\[m \quad \nu_1 \]

\[\nu_r = \frac{\hbar k}{m} \]
Atom light interaction

Two photon transition to suppress spontaneous emission.

Same internal state

Two different internal states
Introduction to atom interferometry

Doppler effect

\[\delta = (\vec{k}_1 - \vec{k}_2) \cdot \vec{v} \]

■ Selection of a subrecoil velocity distribution
Introduction to atom interferometry

Doppler effect

\[\delta = (\mathbf{k}_1 - \mathbf{k}_2) \cdot \mathbf{v} \]

- Selection of a subrecoil velocity distribution
- Measurement of the final velocity distribution

Blow away beam

\[\delta_{\text{sel}} \quad \delta_{\text{meas}} \]
Introduction to atom interferometry

Doppler effect

\[\delta = (\vec{k}_1 - \vec{k}_2) \cdot \vec{v} \]

- Selection of a subrecoil velocity distribution
- Measurement of the final velocity distribution
Atom interferometry

Rabi

\[\pi \]

Horizontal and vertical blow away beam

10 ms 10 ms

Ch. J. Bordé (1984 → ...)
Atom interferometry

Method of Separated Oscillatory Field (Ramsey)
Replace a π pulse by two $\pi/2$ pulses.
Atom interferometry

Rabi

Method of Separated Oscillatory Field (Ramsey)
Replace a π pulse by two $\pi/2$ pulses.

Ch. J. Bordé (1984→...)}
Measuring velocities

Horizontal and vertical blow away beam

\[\delta_{\text{sel}} \]

\[\delta_{\text{meas}} \]
Measuring velocities

Horizontal and vertical blow away beam

Raman

\[\delta_{\text{sel}} - \delta_{\text{mes}} \]

100 Hz

\[t \]

\[\delta_{\text{sel}} \quad \delta_{\text{meas}} \]

Raman

10 ms 10 ms

100 Hz

\[\delta_{\text{sel}} - \delta_{\text{mes}} \]
Coherent acceleration of atoms

Succession of stimulated Raman transitions
(same hyperfine level)

\[\delta = \nu_1 - \nu_2 \propto t \]

Adiabatic passage: acceleration of the atoms

The atoms are placed in an accelerated standing wave: in its frame, they are submitted to an inertial force

→ Bloch oscillations in a periodic potential

(group of C. Salomon, LKB, Paris)
Apparatus

Magnetic shield

2D MOT

3D MOT

Bloch/Raman Beams

Micro-wave

Detection
6.834 GHz + δ + 2kgt

Beat note

- 80 MHz
- AOM
- Magnetic shield
- Bloch/Raman Beams
- Micro-wave
- Raman1
- Raman1
- 2D MOT
- 3D MOT
- AOM
- AOM
- AOM
- Detection
- Bloch/Raman

Apparatus

P. Cladé Determination of α

Feb. , 2015
Measuring velocities

Horizontal and vertical blow away beam

Raman

10 ms

Raman

10 ms

$\delta_{\text{sel}} - \delta_{\text{mes}}$

100 Hz

t

δ_{sel}

δ_{mes}

$\delta_{\text{sel}} - \delta_{\text{mes}}$

100 Hz
Measuring velocities

Horizontal and vertical blow away beam

Raman 10 ms 10 ms Bloch Acceleration

\(\delta_{\text{sel}} \) \(N = 500 \)

\(\delta_{\text{meas}} \)
Measuring velocities

Horizontal and vertical blow away beam

\[N = -500 \quad \delta_{\text{sel}} \quad N = 500 \]

Acceleration \quad Deceleration

\[\delta_{\text{meas}} \]
Measuring velocities

Horizontal and vertical blow away beam

\[N = \pm 300 \quad \text{Elevator} \]
\[N = -500 \quad \text{Acceleration} \]
\[\delta_{\text{sel}} \]
\[N = 500 \quad \text{Deceleration} \]
\[\delta_{\text{meas}} \]
Measuring velocities

Horizontal and vertical blow away beam

\[N = \pm 300 \]
Elevator

\[N = -500 \]
Acceleration

\[N = 500 \]
Deceleration

Raman

Bloch

\[\delta_{\text{sel}} - \delta_{\text{mes}} \]
100 Hz

\[10 \text{ ms} \]

\[\delta_{\text{sel}} - \delta_{\text{mes}} \]

BLB
170 measurements (14 hours)

Each measurement: $6 \times 10^{-9} \, (h/m)$ and $3 \times 10^{-9} \, (\alpha)$

Relative uncertainty on h/m: 4.4×10^{-10} and 2.2×10^{-10} on α.
Results (2010)

Improvement of statistics

- **Vibration isolation**

- **Reliability of the whole experiment (total time of 1000 h)**

Relative uncertainty on h/m of 5×10^{-9} in 3 mn.
Error Budget (α)

<table>
<thead>
<tr>
<th>Source</th>
<th>Correction</th>
<th>Uncertainty 10^{-10}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laser frequencies</td>
<td></td>
<td>1.3</td>
</tr>
<tr>
<td>Beams alignment</td>
<td>-3.3</td>
<td>3.3</td>
</tr>
<tr>
<td>Wavefront curvature and Gouy phase</td>
<td>-25.1</td>
<td>3.0</td>
</tr>
<tr>
<td>2nd order Zeeman effect</td>
<td>4.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Gravity gradient</td>
<td>-2.0</td>
<td>0.2</td>
</tr>
<tr>
<td>Light shift (one photon transition)</td>
<td></td>
<td>0.1</td>
</tr>
<tr>
<td>Light shift (two photon transition)</td>
<td></td>
<td>0.01</td>
</tr>
<tr>
<td>Light shift (Bloch oscillations)</td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>Index of refraction atomic cloud and atom interactions</td>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td>Global systematic effects</td>
<td>-26.4</td>
<td>5.9</td>
</tr>
<tr>
<td>Statistical uncertainty</td>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td>Rydberg constant and mass ratio</td>
<td></td>
<td>2.2</td>
</tr>
<tr>
<td>Total uncertainty</td>
<td></td>
<td>6.6</td>
</tr>
</tbody>
</table>
Error Budget

<table>
<thead>
<tr>
<th>Source</th>
<th>Correction</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laser frequencies</td>
<td>1.3</td>
<td>10⁻¹⁰</td>
</tr>
<tr>
<td>Beams alignment</td>
<td>0.3</td>
<td>10⁻¹⁰</td>
</tr>
<tr>
<td>Wavefront curvature and Gouy phase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>curvature and Gouy phase shift</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Light shift (one photon transition)</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Light shift (two photon transition)</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>Light shift (Bloch oscillations)</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Index of refraction atomic cloud and atom interactions</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>Global systematic effects</td>
<td>-26.4</td>
<td>5.9</td>
</tr>
<tr>
<td>Statistical uncertainty</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>Rydberg constant and mass ratio</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>Total uncertainty</td>
<td>6.6</td>
<td></td>
</tr>
</tbody>
</table>

Wavefront curvature and Gouy phase shift

What is the momentum of a photon?

\[p = \hbar \frac{\partial \phi}{\partial z} \text{ where } \phi \text{ is the phase of the laser beam.} \]

\[p = \hbar k \text{ holds only for perfect plane-wave.} \]

For a Gaussian beam:

\[\frac{\partial \phi}{\partial z} = k + \frac{1}{2k} \left(\frac{4}{w^2} - \frac{4r^2}{w^4} + \frac{r^2k^2}{R^2} \right) \] \hspace{1cm} (5)

where \(w \) is the waist of the beam, \(R \) the wavefront curvature and \(r \) the distance from the propagation axes of the beam.

- We are now using a larger beam waist (smaller Gouy phase shift, better alignment)
SHG fibered laser system

- Laser at 1560 nm
- Amplifier : 30 W
- Freq doubling : PPLN crystal

Power at 1560.36 nm [%]

Crystal temperature : 79.95°C

Power at 780.18 nm [W]
Error Budget (α)

<table>
<thead>
<tr>
<th>Source</th>
<th>Correction</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laser frequencies</td>
<td></td>
<td>1.3</td>
</tr>
<tr>
<td>Beams alignment</td>
<td>-3.3</td>
<td>3.3</td>
</tr>
<tr>
<td>Wavefront curvature and Gouy phase</td>
<td>-25.1</td>
<td>3.0</td>
</tr>
<tr>
<td>2nd order Zeeman effect</td>
<td>4.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Gravity gradient</td>
<td>-2.0</td>
<td>0.2</td>
</tr>
<tr>
<td>Light shift (one photon transition)</td>
<td></td>
<td>0.1</td>
</tr>
<tr>
<td>Light shift (two photon transition)</td>
<td></td>
<td>0.01</td>
</tr>
<tr>
<td>Light shift (Bloch oscillations)</td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>Index of refraction atomic cloud and atom interactions</td>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td>Global systematic effects</td>
<td>-26.4</td>
<td>5.9</td>
</tr>
<tr>
<td>Statistical uncertainty</td>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td>Rydberg constant and mass ratio</td>
<td></td>
<td>2.2</td>
</tr>
<tr>
<td>Total uncertainty</td>
<td></td>
<td>6.6</td>
</tr>
</tbody>
</table>
Magnetic field

- Mapping of the magnetic field
 - Spectroscopy (on \(m_F = 1 \)) at different positions

![Graph showing Zeeman effect vs position in cell and delay](image)

- Calculation (\(m_F = 0 \)) of the effect on each spectra and for \(h/m \)
 - Effect: 0.1 ppb
 - Measurement at different bias field
Error Budget

<table>
<thead>
<tr>
<th>Source</th>
<th>Correction</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laser frequencies</td>
<td>1.3</td>
<td>10^{-10}</td>
</tr>
<tr>
<td>Beam alignment</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Wavefront curvature and Gouy phase</td>
<td>-25.1</td>
<td>3.0</td>
</tr>
<tr>
<td>2nd order Zeeman effect</td>
<td>4.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Gravity gradient</td>
<td>-2.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Light shift (one photon transition)</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Light shift (two photon transition)</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>Light shift (Bloch oscillations)</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Index of refraction atomic cloud and atom interactions</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>Global systematic effects</td>
<td>-26.4</td>
<td>5.9</td>
</tr>
<tr>
<td>Statistical uncertainty</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>Rydberg constant and mass ratio</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>Total uncertainty</td>
<td>6.6</td>
<td></td>
</tr>
</tbody>
</table>

Current status

- Better statistics
- Improved: Gouy phase shift
- Improved: Beam alignment
- Improved: 2nd order Zeeman effect

However, we have a systematic effect correlated to the intensity of the laser used for Bloch oscillations that we don’t understand yet.
New project

High precision atom interferometry using large momentum transfer beamsplitter

- Evaporative cooling (technique used for BEC)
- Dipole trap
- Shot noise limited detection
- Vibration isolation
- Magnetic shield
- Optical frequency measurement
- Wavefront design

Design of a setup to reach the 2×10^{-10} accuracy

Main systematic effects:

- Atom-atom interaction
- Wavefront curvature and Gouy phase shift
Ph.D Students
P. Cladé (2005)
M. Cadoret (2008)
R. Bouchendira (2012)
M. Andia
R. Jannin
C. Courvoisier

Postdoc
E. de Mirandes (2006-2007)

Permanents
C. Schwob
L. Julien
P. Cladé
S. Guellati-Khéïlifa
F. Nez
F. Biraben