Report of the IGS Clock Products Working Group

Ken Senior
U.S. Naval Research Laboratory (NRL)
Ken.Senior@nrl.navy.mil

17th meeting of the Consultative Committee on Time & Frequency

14–15 September 2006
Bureau International des Poids et Mesures
Sèvre, France
IGS Combined Clock Products

- IGS Analysis Centers contributing clocks since Nov. 2000:
 - CODE Center for Orbit Determination in Europe, AIUB, Switzerland
 - ESOC European Space Operations Center, ESA, Germany
 - GFZ GeoForschungsZentrum, Germany
 - JPL Jet Propulsion Laboratory, USA
 - NRCan Natural Resources Canada, Canada
 - USNO‡ U.S. Naval Observatory, USA
 - MIT† Mass. Institute of Technology, USA

- 5-minute intervals for all satellites & ~175 stations
- Supports global autonomous PPP
 - cm-level positioning/dissemination of IG(R)ST
 - dissemination of UTC < 50 ns
- Final, Rapid, & Ultra-Rapid products w/ latencies of 13 d to 3 h
- IGS Reanalysis underway 2006/2007
 - will reanalyze data back to 1994
 - clock densification a high priority
 - PPP using IGS products still an option for obtaining geodetic estimates for non-combination or non-IGS stations

‡Rapids & Ultra-rapids only †Finals only
IGS High Performance Clocks

Time Labs

<table>
<thead>
<tr>
<th>IGS Site</th>
<th>Time Lab</th>
<th>Freq. Std.</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMC2</td>
<td>AMC</td>
<td>H-Maser</td>
<td>Colorado Springs, CO USA</td>
</tr>
<tr>
<td>BOR1</td>
<td>AOS</td>
<td>Cesium</td>
<td>Borowiec, Poland</td>
</tr>
<tr>
<td>BRUS</td>
<td>ORB</td>
<td>H-Maser</td>
<td>Brussels, Belgium</td>
</tr>
<tr>
<td>IENG</td>
<td>IEN</td>
<td>Cesium</td>
<td>Torino, Italy</td>
</tr>
<tr>
<td>KGN0</td>
<td>CRL</td>
<td>Cesium</td>
<td>Koganei, Japan</td>
</tr>
<tr>
<td>MDVJ</td>
<td>VNIIM</td>
<td>H-Maser</td>
<td>Mendeleev, Russia</td>
</tr>
<tr>
<td>MIZU</td>
<td>NAO</td>
<td>Cesium</td>
<td>Mizusawa, Japan</td>
</tr>
<tr>
<td>NISU</td>
<td>NIST</td>
<td>H-Maser</td>
<td>Boulder, CO USA</td>
</tr>
<tr>
<td>NPLD</td>
<td>NPL</td>
<td>H-Maser</td>
<td>Teddington, UK</td>
</tr>
<tr>
<td>NRC1</td>
<td>NRC</td>
<td>H-Maser</td>
<td>Ottawa, Canada</td>
</tr>
<tr>
<td>NRC2</td>
<td>NRC</td>
<td>H-Maser</td>
<td>Ottawa, Canada</td>
</tr>
<tr>
<td>OBE2</td>
<td>DLR</td>
<td>Rubidium</td>
<td>Oberpfaffenhofen, Germany</td>
</tr>
<tr>
<td>OPMT</td>
<td>OP</td>
<td>H-Maser</td>
<td>Paris, France</td>
</tr>
<tr>
<td>PENC</td>
<td>SGO</td>
<td>Rubidium</td>
<td>Penc, Hungary</td>
</tr>
<tr>
<td>PTBB</td>
<td>PTB</td>
<td>H-Maser</td>
<td>Braunschweig, Germany</td>
</tr>
<tr>
<td>SFER</td>
<td>ROA</td>
<td>Cesium</td>
<td>San Fernando, Spain</td>
</tr>
<tr>
<td>SPT0</td>
<td>SP</td>
<td>Cesium</td>
<td>Boras, Sweden</td>
</tr>
<tr>
<td>SYDN</td>
<td>NMI</td>
<td>Cesium</td>
<td>Sydney, Australia</td>
</tr>
<tr>
<td>TLSE</td>
<td>CNES</td>
<td>Cesium</td>
<td>Toulouse, France</td>
</tr>
<tr>
<td>TWTF</td>
<td>TL</td>
<td>Cesium</td>
<td>Taoyuan, Taiwan</td>
</tr>
<tr>
<td>USNO</td>
<td>USNO</td>
<td>H-Maser</td>
<td>Washington, DC USA</td>
</tr>
<tr>
<td>USN3</td>
<td>USNO</td>
<td>H-Maser</td>
<td>Washington, DC USA</td>
</tr>
<tr>
<td>WAB2</td>
<td>CH</td>
<td>H-Maser</td>
<td>Bern, Switzerland</td>
</tr>
<tr>
<td>WTZA</td>
<td>IFAG</td>
<td>H-Maser</td>
<td>Wettzell, Germany</td>
</tr>
<tr>
<td>WTZR</td>
<td>IFAG</td>
<td>H-Maser</td>
<td>Wettzell, Germany</td>
</tr>
</tbody>
</table>

- masers (54) ⭐️ time lab stations (25)
- cesiums (32)
- rubidiums (27)

+ GPS space clocks …
IGS Timescales (cont.)

• Kalman continuous filter implementation
 – formulated as a frequency ensemble
 – deterministic models for rates & drifts
 – process noise capabilities: WHFM, RWFM, RRFM,
 – inputs from ~54 H-maser, 32 Cs, & 27 Rb clocks
 – ~25 stations at timing labs
• Can support IGS move to real-time operations
• Instability \(\sim 1 \times 10^{-15} \) at 1 d
• Suffers in longer term by steering to GPS Time
• Implemented for Final (IGST) & Rapid (IGRT) clocks
• Has run autonomously since 2001, officially adopted in 2003 as reference for IGS Rapid & Final Combined Clock Products

• New Kalman filter implementation (adaptive parameter estimation)
 – filters clock difference measurements, separating phase, freq., and drift shocks as well as fixed-phase sinusoid (WHPM, WHFM, RWFM, & RRFM capable)
 – Utilizes separate set of weights for each filter state
 • set of phase weights optimized for masers
 • set of frequency weights optimized for cesiums
 – LQG multiple-input steering filter utilizing (calibrated) IGS stations colocated at time labs (UTC(k) realizations)
 – Development complete, testing underway
“in situ” Calibration Technique

\[B_i = \text{CLK}_i - \text{UTC}_i \]

\[\begin{align*}
\text{CLK}_i & = \text{GPS geodetic clock estimates at lab } i \\
\text{UTC}_i & = \text{local realization of UTC for lab } i
\end{align*} \]

STATION CALIBRATION BIAS: includes internal GPS receiver/antenna calibration bias & intra-lab offset to UTC

From IGS clock products & BIPM Circular T, can compute:

\[B'_i = (\text{CLK}_i - \text{GPST})_{\text{IGS}} - (\text{UTC} - \text{GPST})_{\text{T}} + (\text{UTC} - \text{UTC}_i)_{\text{T}} \]
\[= (\text{CLK}_i - \text{UTC}_i) + (\text{GPST}_{\text{T}} - \text{GPST}_{\text{IGS}}) \]
\[= B_i + \Delta\text{GPST} \]

Method good to \(\sim 2 \) ns

Small corrections due to different methods of observing GPS time

Senior K., Ray J., Petit G., EFTF 2004
• IGS timescales also useful as valuable station performance feedback to station operators via new time transfer performance measure

updated weekly at
https://goby.nrl.navy.mil/IGStime/daybdy/
Clock RINEX Format

a. "RINEX VERSION / TYPE" header changed to 3.00 and to add satellite system
designator.
b. "PGM / RUN BY / DATE" header date format elaborated.
c. "SYS / # / OBS TYPES" header added.
d. Added Galileo and Space-Based Augmentation System (SBAS) satellite designators
 in Section 5.
e. "TIME SYSTEM ID" header added.
f. The satellite antenna phase center offset information has been moved from a
 mandatory comment to the "SAT ANT PCO / PCV" header and now includes the
 associated phase center variation information also. It is expected that an external
 file will be referenced.
g. "SYS / DCBS APPLIED" header added. [NOTE: The format -- taken from RINEX 3.00
 is not adequate to give DCBs for each satellite. Further changes are under
 discussion.]
h. Capability of handling inter-system timing biases (possibly as a new type of CR data
 record) are under consideration.

To view the pending revised version, please see:
ftp://www.ngs.noaa.gov/dist/jimr/rinex_clock.30aug06 Send any comments to me
and Werner Gurtner (werner.gurtner@aiub.unibe.ch).
CANVAS Software

Clock ANalysis Visualization & Archiving Software

- NRL contribution through IGS Clock Products working group
- Built on Matlab®, though binaries available not requiring Matlab
- Source code available
- Standard Clock time & frequency domain measures
- Clock simulation
- Interactive Visualization (zooming)
- Opportunity to contribute/help with further development
- Download at https://goby.nrl.navy.mil/canvas/

Matlab is a registered trademark of the Mathworks Inc. This does not constitute an endorsement by the U.S. Navy of Mathworks products